The puzzle of the galaxy star formation quenching

31.25 Mpc/h

SF2 Project PI P. Popesso, A. Biviano, A. Finoguenov, G. Erfanianfar, A. Concas, L. Morselli, M.S. Mirkazemi, P. Mucciarelli, And the eROSITA Consortium

Outline

- The SF² project and the puzzle of the SF quenching
- The role of groups in the Cosmic star Formation History
- Fast or slow quenching?
- Conclusions

The Cosmic Star Formation History

CSFH per galaxy stellar mass Heavans et al. (2004)

CSFH per galaxy IR luminosity Magnelli et al. (2013)

The Cosmic Star Formation History

Springel et al. (2005)

Springel et al. (2005)

The dataset

- Sample of X-ray selected galaxy groups in COSMOS, CDFN, ECDFS
- + stacked groups of Guo et al. (2014, SDSS) at z< 0.3, LoCuss clusters at 0.15<z<0.3 and Smail et al. (2014) massive group at z~1.6
- Galaxy members spectroscopically confirmed
- Galaxy SFR derived from midfar-infrared data (MIPS, PACS)

Total SFR, halo mass and redshift: a fundamental plane

- Total SFR (ΣSFR): sum of the SFR of group/cluster members
- Total mass of the host dark matter halo
- redshift

Total SFR, halo mass and redshift: a fundamental plane

Contribution of massive halos to the CSFH

Total SF activity of halos in a given mass range (ΣSFR-halo mass-z plane)

Evolution of the comoving number density of such halos (WMAP 9 cosmology)

Contribution of such halos to the CSFH

Contribution of massive halos to the CSFH

Popesso et al. (2014a)

The Cosmic Star Formation History

CSFH per galaxy stellar mass Heavans et al. (2004)

CSFH per galaxy IR luminosity Magnelli et al. (2013)

Which galaxy in which halo?

Popesso et al. (2014a)

The SFR distribution in massive halos

The SFR distribution in massive halos

Group galaxies & Main Sequence

Group galaxies, Main Sequence Morphology

Erfanianfar, Popesso, Biviano et al. (in prep.)

Group galaxies, Main Sequence Morphology

Erfanianfar, Popesso, Biviano et al. (in prep.)

Fast satellite quenching

104

10³

0.1

0

Semi-amalytical model (Guo et al. 2011)

redshift Mass abundance matching model (Moster et al. 2012)

1

1.5

2

103

0.5

Immediate quenching of satellites when they enter more massive halos Satellite overquenching

Slow Satellite quenching

Cold-hot mode accretion transition (Kereš et al. 2005):
Satellites keep their "identity" for a while before experiencing massive parent halo effect (Simha et al. 2009, Cen 2011)

• Ram pressure + starvation (Cen 2014)

Quenching timescale 2-3 Gyrs

Mass abundance matching model (Bethermin et 2013)

Conclusions

- CSFH is dominated at z~1 by massive galaxies in habiting massive halos ($M_{halo} \sim 10^{13} M_{\odot} \rightarrow halo downsizing$)
- Galaxies in massive halos experience a significantly faster evolution with respect of the low mass halo galaxies: their star formation activity is quenched more rapidly
- At z~1 group galaxies are on the MS as low mass halo galaxies but they depart from it by z~o toward the quiescence region
- SF quenching takes place before morphological transformation in massive halos.
- The quenching process must be slow (2-3 Gys timescale):
 - cold to hot accretion mode transition
 - ram pressure stripping + starvation