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Outline:

What are Photometric Redshifts and why do we need them?

What are Conditional Probability Density Functions (PDFs)
and why do we need them?

How do we know how accurate they are?
How do we estimate them efficiently?

How well do our algorithms perform on data?
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Photometric Redshifts
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Why Photometric Redshifts?

e Spectroscopic Redshifts expensive (long exposure times
especially for faint objects)

e Small datasets
— insufficient for many cosmological applications
(cosmic shear, large scale structure, etc.)

e Solution: Photometric Surveys with spectroscopic overlap

Learn the mapping between the photometry of objects f and their
spectroscopic redshifts zs,e. and apply this model to objects
without spectroscopy. Machine Learning often more accurate than
traditional Template Fitting.

(Sanchez et al. 2014 (DES) arXiv:1406.4407)
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Evaluation

Algorithms Application to Data

Kernel Density Estimation
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Why PhotoZ PDFs?

Application to Data
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regression ML algorithms are
not able to estimate stacked
redshift PDFs

e Unsuited for many applications
in cosmology (i.e. Cosmic Shear,
Lensing Cluster Mass
measurement)
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Redshift Conditional PDFs Evaluation Algorithms Application to Data

Example in 2D
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e 2D example with one filter
(Data from CFHTLS W3)

e Estimate conditional PDF in
black region



Redshift Conditional PDFs

The conditional PDF

The conditional PDF p(z|f) of the objects redshift z given its
photometry f is defined as:

p(z[f) = p(z,f)/p(f) (3)
Weighted Kernel Density Estimate:
N
i) = S Wi N (zp =20 =h)  (4)
i=1

Conditional Mean (Output of ANNz):

N
Zonon(F) = 3 wi(F) 27 (5)
3

1

Conditional Variance:

() = S wilf) (27 = 2ot (F))’ (6)

=1



Redshift Conditional PDFs

Conditional PDF Estimation can be used to obtain arbitrary
point predictions (Mean, Mode, Median)

Incorporate redshift uncertainty in follow up analysis

Novel algorithm: parametrizes conditional pdf highly efficient
(5 numbers/object)
— Scales well to large datasets (e. g. Euclid, DES)

Allows the accurate reconstruction of the sample redshift pdf
of a photometric sample

1 N
p(z) = 1 > p(zlf) (7)
i=1



Evaluation

Machine Learning Methodology

Split available data into three datasets (60%, 20%, 20%)
training set, validation set, test set

Estimate the conditional redshift PDF on the training set
Tune the estimate on the validation set

Predict the performance on unseen data using the test set



Evaluation

Evaluation Metrics

e Kullback-Leibler Divergence

Do) = | p(x)log(gm dx ®)
D(p|lp) = / " p(x)log (p(x))dx / " p(x) log (A(x)) dx
(9)

e Minimize — [*_p(x) log (p(x))
e Minimize mean negative log-likelihood loss (MNLL)

N
MNLL = = > log (p(zilfi)) (10)



Algorithms

Basic Concept

Remember:
Ntr
) =S wE)N (2= 2" 0 =h) (1)
=1

Nir: Number of objects in the training set

Questions:
e How to estimate the weights w;(f)?

e Using a Quantile Regression Forest
e Using an Ordinal Classification Approach

e Given {w;(f), zZ"**“} how do we estimate the objects PDF?

1

o Weighted Kernel Density Estimate (Eqn. 11)

e Linear combination of normal densities (Gaussian Mixture
Model)
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Regression Tree

T2
E
b5 5
by C D
A
6, 0y %

research.microsoft.com/en-
us/um/people/cmbishop/prml/index.htm




Photometric Redshifts

Redshift Conditional PDFs

Evaluation Algorithms

Quantile Regression Forest (Meinshausen 2006)

T
E
uloo,
0 C D
A
b, 5, &

Single Tree:
/ (f;“r € R[(f’g))

ZJN:trl / <f}r € R/(fﬂ))
(12)

w;(f) =

Tree Ensemble:
1K
wi(f) = o bz:l wi(f,0p) (13)

f: parametrizes how the tree
was grown

Application to Data



Algorithms

The Highest Weight Element

e Useful "by-product" from Quantile Regression Forest

o Use weights from Quantile Regression Forest
o Select the spectroscopic redshift with the highest weight
o 2P for max (w;(f))

e Similar to Nearest Neighbour estimator
e Single floating point number per object
— Very efficient estimator for sample redshift PDF
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Classification for PhotoZ PDFs
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Algorithms

How do we estimate the weights w;(f)?

e |Idea: Bin the redshift range and use a probabilistic classifier to
reconstruct the PDF. (Schapire et al. 2002, Frank et al. 2009)

wi(f) = PO (14)

Np,

e b;: Index denoting the bin

e p(b;|f): probability that the redshift of an object with
photometry f falls into bin b;.

e np,: number of training set objects in bin b;



Algorithms

Ordinal Classification

Idea: Treat the binned redshift as an ordinal scale variable to
improve classification. (Frank et al. 2001)

Nominal Classes:

p(Temp = Cool|x), p(Temp = Mild|x), p(Temp = Hot|x)
Ordinal Classes:

p(Temp > Cool|x), p(Temp > Mild|x)

Recover Class probabilities:

p(Temp = Cool|x) =1 — p(Temp > Cool|x),

p(Temp = Hot|x) = p(Temp > Mild|x),

p(Temp = Mild|x) = p(Temp > Cool|x) — p(Temp > Mild|x)
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Application to binned redshift
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Calibrating Class Probabilities

=
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e Monotonicity of cumulative
probability not guaranteed

e Calibrate using Isotonic
(Monotonic) Regression



Algorithms

Recapitulation

The photometric redshift PDF for a new object is estimated
from the training set

{wi(f), 27} (15)
The weights {w;(f)} are estimated using:
e Quantile Regression Forest (QRF)
e Not Ordinal (nominal) Classification PDF estimate (NOCP)
e Ordinal Classification PDF estimate (OCP)
The Highest Weight Element (HWE) is a single floating point
estimate for the stacked redshift PDF

Find density estimate for the weighted spectroscopic redshifts
in the training set



Algorithms

Density Estimation

e Kernel Density Estimation

e Select bandwidth h

e Density Estimation using Gaussian Mixture Models

p(zlf) = Za: PN (2, pi(f), oi(F)) (17)

i=1

e Select number of mixture components K
o Fit mixture components to weighted data



Algorithms

Bandwidth Selection

'Scott’ Bandwidth:

tr
"Hjort” Bandwidth:
R o
OHjort = ETM
tr

Standard Deviation

Ntr

52(6) =Y wilf) (27 = Zpnur(F))’

i=1

Select the factor a using the validation set

(18)

(19)

(20)



Algorithms

Gaussian Mixture Model

Motivation: Sparse parametrization

o More efficient (i.e. 5 floating point numbers per object)

e Easier to interpret
Fit the parameters «;(f), p;i(f) and o;(f) to the weighted data

spec

{Wi(f)’zi }
Fix a maximum number of mixture components K,.x using
the validation set
Select the number of components 0 < K < K On a
per-object basis that minimizes the normalized entropy
criterion
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Normalized Entropy Criterion (Celeux & Soromenho 1996)
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Dataset
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Application to Data

Redshift Conditional PDF
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Stacked Redshift PDF
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Magnitude Selected Samples
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Application to Data

Conclusions

Highest Weight Element accurately estimates the redshift
sample PDF (1 floating point number)

Ordinal classification improves classification accuracy

Gaussian Mixtures very efficient (5 floating point numbers) for
PDF estimation

Point predictions (i.e. conditional mean) don’t provide enough
information for many applications in cosmology

— Currently actively explored by us
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