Towards a New Understanding of Giant Clumps in Clumpy Disks at z~1-3

Manuel Behrendt Andreas Burkert, Marc Schartmann

Max Planck Institute for Extraterrestrial Physics (MPE), Garching University Observatory (USM), LMU Munich

OPINAS Seminar, MPE, 27.04.2015

Typical Morphology of clumpy galaxies

SFGs in the CANDELS/Goods-S and UDS field

z = 0.5-3 composite RGB images spatial resolution ~kpc

z=1-3

galaxies - irregular structure - relatively thick

~kpc sized clumps 10⁸-10⁹ M_{sol}

high gas fractions ~50%

high velocity dispersion ~50 km/s

high sfr, relatively young stars $\sim 10^8$ yrs

minority display signatures from mergers

minority origin outside

Local Axisymmetric Instability

Fragmentation in an axisymmetric disk

Thickness Effects

Thickness Effects

Potential:
$$\Phi_{tot}(\lambda, x, z = 0) = \Phi_0(\lambda, x) F(\lambda, z = 0)$$

for an infinitesimally
thin-disk
Reduction Factor $F=(0,1)$

Behrendt et al. 2015

Thickness Effects for a gas disk in vertical equilibrium

fastest growing wavelength

$$\lambda_f = A \lambda_0 = A \frac{2c_s^2}{G\Sigma}$$

(independent of the galactic rotation !)

scale height independent constant factor

$$A \sim 1.9 \; ({
m sec} \, h^2) \,_{
m profile}$$

$$M_{cl} = \Sigma \frac{\pi \lambda_f^2}{4} = A^2 \Sigma \frac{\pi \lambda_0^2}{4}$$

$$\lambda_f$$

$$\xrightarrow{-> \text{ size: } \sim 2 \times \\ -> \text{ mass: } \sim 4 \times }$$

Simulation

Main Properties:

exponential surface density $R_{disc} = 16 \ kpc$ $h = 5.26 \ kpc$ $T = 10^4 K$ $M_{disc} = 2.7 \times 10^{10} M_{\odot}$ $M_{DM} = 1.03 \times 10^{11} M_{\odot}$

AMR Refinement: RAMSES $N_J = 18$ $\Delta_{max} = 187.5 \ pc$ $\Delta_{min} = 5.86 \ pc$ $\approx z_0, 5 \times resolved$

Behrendt et al. 2015

Growing Wavelengths

log10(density) (Msun/pc^2) 1 1.4 2.1 2.8 4.2 5 3.5 59.6 Myr 2 kpc

Overdensities

Relative Extrema

Behrendt et al. 2015

Rings collapse first, then clumps fragment on smaller scales

Rings collapse first, then clumps fragment on smaller scales

Clump Finding

Clump Finder RAMSES:

- density \geq 100 H/cc
- distinguish substructures with sattel point criterium
- gravitationally bound
- -> Clump positions
- -> Clump area

Postprocessing:

- V_i V_{cm} (substract center of mass velocity)
- angular momentum vector
- -> go into clump restframe
- -> calculate profiles

Radius definition:

- density profile ~ <100 H/cc
- else: M_cum ~ const.

Mass \propto Radius^{2±0.2}

Time Evolution

Mass-bins: green [5e7:1e8[; blue [1e8:5e8[; purple [5e8:1e9[; black [1e9:5e9]] Behrendt et al. (in prep.)

Behrendt et al. (in prep.)

Behrendt et al. (in prep.)

Fast Encounters

2 kpc

7

log10(Sigma msun/41,pc/2)

1.000e+00 2.4 3.2 4 5.465e+00

559 Myr

Cluster Histograms

Observations: Genzel et al. 2011

-Clumpy substructure below the current resolution-

Velocity "channels" in the H α -line of width ~34 km/s

Summary

- Clumpiness is very common at high z
 -> can be explained by gravitational disk instability
- Fastest growing wavelength is ~2x larger for disks with thickness
- -> for Q < Q_{crit} -> Rings form (in an axisymmetric disk)
- It is very import to resolve the disk scale height several times
- -> rings collapse first, before they break-up into a large number of clumps (according to local conditions)
 -> wavelength is not directly correlated to clump size anymore
 - -> giant clumps cannot form initially
- Clumps merge to upper limit of $< 10^9 M_{sol}$
- Clumps build ~kpc sized groups and re-group all the time
 -> indication: observed giant clumps have substructure