Background fitting of Fermi gamma-ray burst 091030613

Dorottya Szécsi ${ }^{1}$, Zsolt Bagoly ${ }^{1,2}$, Lajos G. Balâzs ${ }^{1,3}$, Péter Veres ${ }^{4}$, József Kóbori

Abstract

Fermi Gamma-ray Burst Monitor (GBM) detects gamma-rays in the energy range $8 \mathrm{keV}-40 \mathrm{MeV}$. Background fitting of the Fermi data is not trivial in some cases, especially when an Autonomous Repoint Request (ARR) is received. One good example is the burst 091030613 measured by the GBM, which cannot be fitted properly by a third-order polynomial of time [3]. We present the background fitting of this burst for energy channels given in the CTIME data file. Our method is based on the motion of the satellite: we define three underlying parameters which depend on the actual position and orientation of the satellite and use them to fit the background. The main steps and results of this process are shown on the poster for the triggered Nal detector '3'.

Sum of hannels 982.23 keV)

091030613 det: 3 channel: all
mean low, mean high the 12 Nal detectors normal vector on the sky (in the second equatorial system), during the pre- and post-1000 seconds around the burst 091030613.
Sun's position: $\alpha_{S}=210.12^{\circ}$, $\delta_{S}=-13.00^{\circ}$ 27°

091030613 det: 3 channel: 3 fitid background
091030613 det: 3 channel: 3 levei $0-$
Channel 3
(26.63-
50.43 keV)

091030613 det: 3 channel: 3
mean low, mean high

091030613 det: 3 channel: 4 _ $\begin{gathered}\text { fitted background }\end{gathered}$
091030613 det: 3 channel: 4
091030613 det: 3 channel: 4
mean low, mean high
Channel 4
$(50.43-$
$102.38 \mathrm{keV})$

