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Abstract

In the present work, we focus on the interplay between 
stochastic acceleration of charged particles and radiation 
processes in a region of turbulent magnetized plasma, setting the 
framework for an “one-zone” radiation-acceleration model for 
GRB afterglows. Specifically, we assume that the particle 
distribution is isotropic in space and treat in detail the particle 
propagation in momentum-space. The electron distribution is 
modified by the acceleration, radiation (synchrotron/SSC) and 
escape processes. The magnetic field as well as the particle 
injection rate  are functions of time as measured in the co-
moving frame of the blast wave. We numerically solve the time-
dependent Fokker-Planck equation and present characteristic 
examples for the obtained particle and photon spectra.
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Afterglow emission originates from an external shock that is 
formed by a relativistic blast wave propagating in the surrounding 
medium (e.g. Meszaros & Rees 1997). The non-thermal character 
of the afterglow emission suggests the formation of a high-energy 
particle population through an acceleration mechanism. Thus, a 
self-consistent model for the afterglow emission should combine 
the acceleration and radiation processes of particles, as the physics 
of the problem implies.

Particle acceleration at (ultra)relativistic shocks has been studied 
in the test particle approximation both analytically (Kirk et al. 
2000; Waxman & Keshet 2005) and numerically using  Monte 
Carlo simulations (Bednarz & Ostrowski 1998; Achterberg et al. 
2001) . The resulting particle spectra can be modelled as power-
laws of exponent p~2.3-2.4.  More recently PIC simulations 
(Spitkovski 2008) that take into account the back-reaction of 
accelerated particles onto the shock structure show that the particle 
distribution consists robustly of two components: (i) a relativistic 
Maxwellian and (ii)  a power-law tail. Based on the results of 
particle acceleration theory and simulations, the majority of works 
for  radiative signatures  from GRB afterglows uses an already 
accelerated power-law  particle distribution.  A first effort to 
combine stochastic acceleration and adiabatic losses  for particles 
in a  GRB blast wave shell  using  the kinetic  equation approach 
was made by  Dermer & Humi (2001).  

Aims of the present  work are:

 The combination of stochastic acceleration and radiation 
processes into a time-dependent 'one-zone' model specified on the 
afterglow emission.
 The study of the parameter-space based on the morphologies of 

the obtained electron and photon spectra. 

 Case 1:  ta c c = constant and te s c = te s c  (r) 
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Case 3: ta c c = ta c c  (γ,r) and te s c = te s c  (γ,r) 

Fokker-Planck equation 

Definition of functions appearing in eq. Fokker-Planck 

Escape timescale

Acceleration timescale

Diffusion coefficient

Energy loss rate

Synch. photon energy density

Injection rate

Here  ξ  is the fraction of the kinetic energy  that is used for acceleration of 
particles and t

d  y n
 = r/cΓ(r) is the dynamical scale of the problem.

We present  results obtained from the numerical solution of the 
Fokker-Planck equation  for three example cases, where we assumed 
E

0
=105 3  erg/s, Γ

0
=100, n

0
=1 par/cm3 .  A redshift z=0.1 was used 

throughout the present work.

(a) ta c c =103 s,  εB=0.1,  =0.1ξ

We consider an adiabatic blast wave with initial energy E
0
 and 

Lorentz factor Γ
0

 that propagates into an external medium of 

constant number density n
0
 . We assume a mono-energetic electron 

 injection at γ
i n j 

~Γ(r),  in the blast wave shell of co-moving width 

Δ' = r/Γ(r),  containing a magnetic field of strength B=(32 π n
0 
m

p
 

ε
B 

c2)1/ 2  Γ(r).  On the one hand, injected particles are being 

stochastically accelerated through resonant scattering with 
turbulent MHD waves, while on the other hand they suffer energy 
losses through synchrotron and SSC emission.   For the turbulence 
we assume a power-spectrum  w(k)dk ~ k- q dk, with the exponent 
lying typically in the range 1-2.  Escape of particles from the 
acceleration/radiation region is also taken into account. 

Simplifying assumptions

1. Test-particle approximation.

2. The particle distribution in the shell is isotropic. Thus, we can 
ignore the details of particle transport in space and focus on their 
propagation in momentum-space.

3.  An energy dependent escape term treats approximately the 
problem of spatial confinement of the particles in the acceleration 
region.

4.  The distribution of emitted photons is not treated through a 
separate equation. The emitted synchrotron spectrum at each co-
moving time t' is obtained from the convolution of the synchrotron 
emissivity function and the electron distribution .

5. Synchrotron radiation fills instantaneously the shell. Thus, SSC 
spectra at a time t' are obtained from the convolution of the 
synchrotron photon  and electron distributions at the same time. 
No photon travel effects are taken into account for this calculation. 
 

FIGURE 1: Snapshots of the evolving electron distribution at 
early (red lines) and late (black lines) times with respect to 
ta  c  c .  The  quadratic  dependence  at  lowenergies  and  the 
exponential cutoff at highenergies are characteristics of the 
second order acceleration process.

FIGURE 3:  Time evolution of the observed synchrotron 
(solid lines) and SSC (dashed lines) spectra. The relative 
ratio of the synchrotron/SSC peak changes during the 
evolution. The peak position of the synchrotron spectrum 
remains constant (black lines).

(b) ta c c =105 s,  εB=0.001,  =0.1ξ

FIGURE 2: Symbols same as in Fig.1. Because of the slower 
acceleration, the distribution does not reach the maximum energy 
at t'=105 s , in contrast to the case shown in Fig.1.  Moreover, the 
magnetic field is weaker and the synchrotron losses truncate the 
distribution at a higher Lorentz factor than in Fig.1.

FIGURE 4: Symbols same as in Fig.3.  

Here we examine the “hard sphere” approximation, i.e.  q=2.

We present two examples with: (a) “fast” acceleration and strong
magnetic field and (b) “slow” acceleration and weak magnetic field. 
The  acceleration is characterized “slow” or “fast” with respect to the 
deceleration dynamical timescale, i.e.   

The  parameters used for the examples are  given below:

γ eq∝B−2/5
⇒ ν s,max

obs
∝ΓΒγeq

2
∝r−9/5

FIGURE 5: Snapshots of the electron distribution.  The 
slope 0.5 of the particle distribution is typical of the 
specific turbulent spectrum exponent. It is obtained for 
that range of Lorentz factors, for which the acceleration 
process is the fastest among the escape  and synchrotron 
losses. 
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ζ=
∫W  k  dk

B2/8π

In the previous cases we have treated the normalization of t
a c c 

 as a free 

parameter. Here we adopt an expression for the diffusion coefficient (e.g. 
Melrose 1968; Schlickeiser 1989) corresponding to  

This choise reduces the number of free parameters, which for this 
example are: 

FIGURE 7: Evolution of the electron distribution.  At early 
stages (t'<103  s) acceleration and escape processes determine 
the shape of the distribution. Energy losses become important 
at later times (t'>103 s) and escape of particles is inefficient. 
Thus, particles tend to pile up at the equilibrium energy, 
forming a bump. 

FIGURE  8 : Characteristic timescales (lines of 
different type) as a function of the Lorentz factor γ.  
Different colours denote different times. In this case 
the time evolution of the system is not trivial.  
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Case 2: ta c c = ta c c  (γ) and te s c = te s c  (γ,r) 
Here we focus on a case with turbulent exponent q=1/2.
The explicit expressions for the acceleration and escape timescale  used 
are:

Other parameters used: 
In this case  a time-decreasing observed synchrotron peak frequency 
can be obtained  (see the last two snapshots of Fig.6). This is suggested
 by the following relations:
 If the acceleration process is saturated due to particle escape:

 If the acceleration process is saturated due to synchrotron losses:

γ eq∝ tdyn
1/3

⇒ ν s,max
obs

∝ΓΒγeq
2
∝r−4/3

γ eq∝B−1
⇒ ν s,max

obs
∝ΓΒγ eq

2 =const

t dyn  Rd ≈8×10 4 s

Comments:
 In Fig.2 the particle distribution accelerates slowly because of the 

large acceleration timescale. For this reason the distribution does not 
extend up to the maximum energy at t'=105 s. This explains also the 
density of the snapshots in contrast to that of Fig.1 . 
 Because of the weaker magnetic field, the acceleration saturates due to 

synchrotron losses at a higher Lorentz factor than in Fig.1.  
 Although the distribution does not reach a steady state, at late times it 

evolves in both cases in a self-similar way.

PARTICLE DISTRIBUTIONS

OBSERVED PHOTON SPECTRA

Comments:
 In both examples the acceleration is saturated due to synchrotron 

losses.  The observed  peak synchrotron frequency is constant during the 
deceleration of the blast wave , i.e.
 The relative ratio of the synchrotron/SSC peak luminosity varies with 

time starting with values less than unity. The fact that particle escape 
becomes less efficient at late times combined with the decrease of the 
magnetic field strength leads to an SSC dominance of the spectra at late 
times.

t acc=10 3 γ
103 3/2 s t esc=10 9/2 t dyn  r   γ

103 −3/2 s

ε B=10−3 , ξ=2×10−3

FIGURE 6: Time evolution of the observed photon spectra.
The peak frequencies of the synchrotron and SSC 
components decrease with time during the deceleration of 
the blast wave (blue and green lines).

t acc γ , t ' =τacc  t '  γ2−q

τ acc= 2π 
q+ 1

n0 mp c2 m e c 2

e 
2−q

ζ −1 Bq−4  t'  tdyn
q−1  t' where the normalization is 

 and                              is the ratio of the turbulent energy density to

 that of the large-scale magnetic field.

q=1, ε B=1.2×10−5 , ζ=10−5 , ξ=0.1

FIGURE 9: Same as Fig.7 but 
replotted for the quantity  γ2  n, 
which is a measure of the 
particle energy content.  
Although the number of 
particles accumulated at the 
cutoff of the distribution 
increases with time (see Fig.7), 
the energy content starts 
decreasing from t' > 104 s. 
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