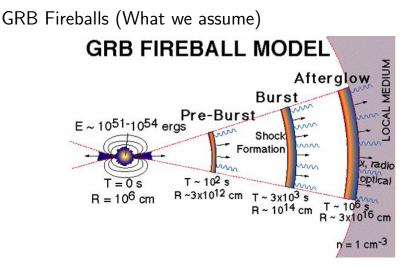


Neutrinos from GRBs, and the connection to gamma-ray observations

Philipp Baerwald


Institut für Theoretische Physik und Astrophysik Universität Würzburg

in collaboration with Svenja Hümmer and Walter Winter

Gamma-Ray Bursts 2012 Conference in Munich May 11, 2012

from WWW.SWIFT.AC.UK

Interactions of protons with photons can lead to the production of neutrinos

Photohadronic production of neutrinos

Basic approach by Waxman and Bahcall: approximation of $p\gamma$ interaction cross section using $\bf \Delta\text{-}resonance$

$$p + \gamma \rightarrow \Delta^+ \rightarrow \left\{ \begin{array}{cc} n + \pi^+ & 1/3 \mbox{ of all cases} \\ p + \pi^0 & 2/3 \mbox{ of all cases} \end{array}
ight.$$

The π^+ decay producing ν_{μ} , $\bar{\nu}_{\mu}$ and ν_e in the process

$$\pi^+ \rightarrow \mu^+ + \nu_\mu \\ \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu$$

Standard conclusion

 ν result from interaction of p and γ in GRBs, with a ratio $(\nu_e:\nu_\mu:\nu_\tau)$ of (1:2:0), or (1:1:1) after flavor mixing.

See e.g. [WAXMAN AND BAHCALL, PHYS. REV. LETT. 78 (12), 2292 (1997)]

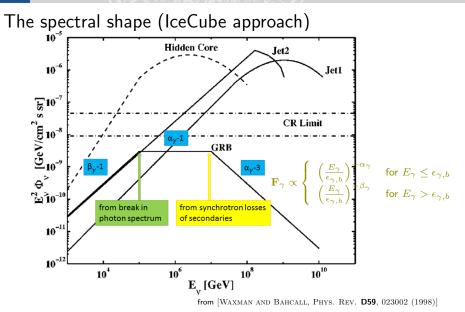
The normalization (IceCube approach)

$$\int_{0}^{\infty} \mathrm{d}E_{\nu} E_{\nu}F_{\nu}(E_{\nu}) = \underbrace{\frac{1}{2} \cdot \frac{1}{4}}_{f_{\pi}} \underbrace{\left(1 - (1 - \langle x_{p \to \pi} \rangle)^{\Delta R/\lambda_{p\gamma}}\right)}_{f_{\pi}} \underbrace{\frac{\mathsf{energy in protons}}{\frac{1}{f_{e}} \int_{1 \, \mathrm{keV}}^{10 \, \mathrm{MeV}} \mathrm{d}E_{\gamma} E_{\gamma}F_{\gamma}(E_{\gamma})}_{f_{\pi}}$$

Fraction of energy f_{π}

with number of interactions

$$\frac{\Delta R}{\lambda_{p\gamma}} = \left(\frac{L_{\gamma}^{\rm iso}}{10^{52}\,{\rm erg\,s^{-1}}}\right)\,\left(\frac{0.01\,{\rm s}}{t_{\rm var}}\right)\,\left(\frac{10^{2.5}}{\Gamma_{\rm jet}}\right)^4\,\left(\frac{{\rm MeV}}{\epsilon_{\gamma}}\right)$$


and average energy lost to pions (per interaction)

$$\langle x_{p \to \pi} \rangle \simeq 0.2$$

from [Abbasi et al., Astrophys. J. 710, 346 (2010)],

based on [GUETTA ET AL., ASTROPART. PHYS. 20, 429 (2004)]

GRB fireballs in trouble

LETTER

doi:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray acceleration in γ -ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic rays to above 10⁴⁶ electronvolts. GRBs (γ -ray bursts) have been proposed as possible candidate sources¹⁻³. In the GRB 'freball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ -rays⁴. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux²⁻⁴. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions²⁻⁴⁻⁴⁰. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10⁴⁶ electronvolts or that the efficiency of neutrino production is much lower than has been predicted.

Neutrinos from GRBs are produced in the decay of charged pions produced in interactions between high-energy protons and the intense γ -ray background within the GRB fireball, for example in the A-resonance process $p+\gamma \rightarrow d^+ \rightarrow n^+ \pi^+$ (p, proton; γ , photon (here γ -ray); d^+ , delta baryon; n, neutron; π^+ , pion). When these pions decay via $\pi^- \rightarrow \mu^- \gamma_e$, and $\mu^- \rightarrow e^+ \nu_e p_\mu$, they produce a flux of high-

As in our previous study7, we conducted two analyses of the IceCube data. In a model-dependent search, we examine data during the period of y-ray emission reported by any satellite for neutrinos with the energy spectrum predicted from the y-ray spectra of individual GRBs⁶⁹. The model-independent analysis searches more generically for neutrinos on wider timescales, up to the limit of sensitivity to small numbers of events at ±1 day, or with different spectra. Both analyses follow the methods used in our previous work7, with the exception of slightly changed event selection and the addition of the Southern Hemisphere to the model-independent search. Owing to the large background of downgoing muons from the southern sky, the Southern Hemisphere analysis is sensitive mainly to higher-energy events (Supplementary Fig. 3). Systematic uncertainties from detector effects have been included in the reported limits from both analyses, and were estimated by varying the simulated detector response and recomputing the limit, with the dominant factor being the efficiency of the detector's optical sensors.

In the 59-string portion of the model-dependent analysis, no events were found to be both on-source and on time (within 10° of a GRB and between $T_{\rm start}$ and $T_{\rm stop}$). From the individual burst spectra⁶⁹ with an

GRB fireballs in trouble?

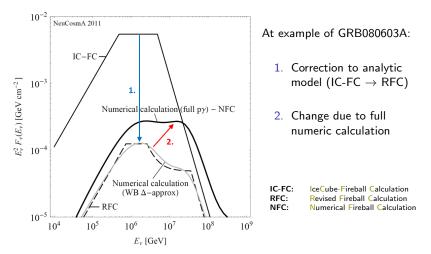
LETTER

doi:10.1038/nature11068

An absence of neutrinos associated with cosmic-ray acceleration in γ -ray bursts

IceCube Collaboration*

Very energetic astrophysical events are required to accelerate cosmic rays to above 10⁴⁶ electronvolts. GRBs (γ -ray bursts) have been proposed as possible candidate sources¹⁻³. In the GRB 'freball' model, cosmic-ray acceleration should be accompanied by neutrinos produced in the decay of charged pions created in interactions between the high-energy cosmic-ray protons and γ -rays⁴. Previous searches for such neutrinos found none, but the constraints were weak because the sensitivity was at best approximately equal to the predicted flux²⁻⁴. Here we report an upper limit on the flux of energetic neutrinos associated with GRBs that is at least a factor of 3.7 below the predictions²⁻⁴⁻⁴⁰. This implies either that GRBs are not the only sources of cosmic rays with energies exceeding 10⁴⁶ electronvolts or that the efficiency of neutrino production is much lower than has been predicted.


Neutrinos from GRBs are produced in the decay of charged pions produced in interactions between high-energy protons and the intense γ -ray background within the GRB fireball, for example in the A-resonance process $p+\gamma \rightarrow d^+ \rightarrow n^+ \pi^+$ (p, proton; γ , photon (here γ -ray); d^+ , delta baryon; n, neutron; π^+ , pion). When these pions decay via $\pi^- \rightarrow \mu^- \gamma_e$, and $\mu^- \rightarrow e^+ \nu_e p_\mu$, they produce a flux of high-

As in our previous study7, we conducted two analyses of the IceCube data. In a model-dependent search, we examine data during the period of y-ray emission reported by any satellite for neutrinos with the energy spectrum predicted from the y-ray spectra of individual GRBs⁶⁹. The model-independent analysis searches more generically for neutrinos on wider timescales, up to the limit of sensitivity to small numbers of events at ±1 day, or with different spectra. Both analyses follow the methods used in our previous work7, with the exception of slightly changed event selection and the addition of the Southern Hemisphere to the model-independent search. Owing to the large background of downgoing muons from the southern sky, the Southern Hemisphere analysis is sensitive mainly to higher-energy events (Supplementary Fig. 3). Systematic uncertainties from detector effects have been included in the reported limits from both analyses, and were estimated by varying the simulated detector response and recomputing the limit, with the dominant factor being the efficiency of the detector's optical sensors.

In the 59-string portion of the model-dependent analysis, no events were found to be both on-source and on time (within 10° of a GRB and between $T_{\rm start}$ and $T_{\rm stop}$). From the individual burst spectra^{6,9} with an

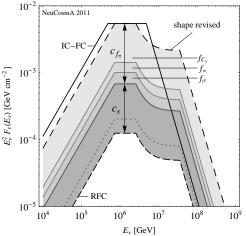
How the spectrum changes...

from [HÜMMER, PB, AND WINTER, ARXIV:1112.1076, ACCEPTED FOR PUBLICATION IN PHYS. REV. LETT.]

Numerical approach Corrected analytic model

Revised fireball model

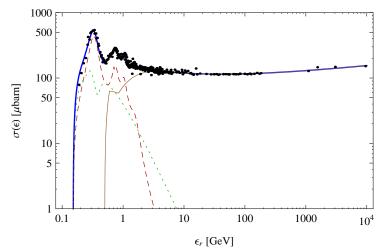
Corrections to shape (c_s) :


- Revised shape
- Correct energy losses of secondaries
- Full energy dependencies

See also [LI, PHYS. REV. **D85**, 027301 (2012)].

Corrections to f_{π} ($c_{f_{\pi}}$):

- Integral normalization of photon spectrum
- Rounding errors
- Width of Δ -resonance


Compare to [GUETTA ET AL., ASTROPART. PHYS. **20**, 429 (2004)].

from [Hümmer, PB, and Winter, arXiv:1112.1076, accepted for publication in Phys. Rev. Lett.]

The measured cross section

from [HÜMMER, RÜGER, SPANIER, AND WINTER, ASTROPHYS. J. **721**, 630 (2010)], based on [MÜCKE, ENGEL, PROTHEROE, RACHEN, AND STANEV, COMP. PHYS. COMM. **124**, 290 (2000)]

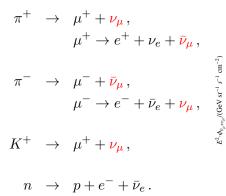
Numerical approach Beyond the Delta-resonance

Further production modes

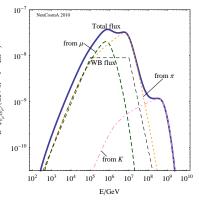
$$\pi^+ \rightarrow \mu^+ + \nu_\mu, \mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu,$$

$$\begin{array}{rcl} \pi^- & \rightarrow & \mu^- + \bar{\nu}_\mu \, , \\ & \mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu \, , \end{array}$$

$$K^+ \rightarrow \mu^+ + \nu_\mu,$$


$$n \rightarrow p + e^- + \bar{\nu}_e$$
.

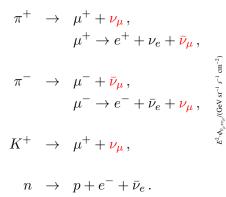
See also [MURASE AND NAGATAKI, PHYS. REV. D73, 063002 (2006)], [KASHTI AND WAXMAN, PHYS. REV. LETT. 95, 181101 (2005)], [ASANO AND NAGATAKI, ASTROPHYS. J. 640, L9 (2006)], [LIPARI, LUSIGNOLI, AND MELONI, PHYS. REV. D75, 123005 (2007)].



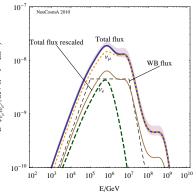
Further production modes

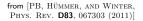
Resulting ν_{μ} flux (at the observer)

See also [MURASE AND NAGATAKI, PHYS. REV. **D73**, 063002 (2006)], [KASHTI AND WAXMAN, PHYS. REV. LETT. **95**, 181101 (2005)], [ASANO AND NAGATAKI, ASTROPHYS. J. **640**, L9 (2006)], [LIPARI, LUSIGNOLI, AND MELONI, PHYS. REV. **D75**, 123005 (2007)].

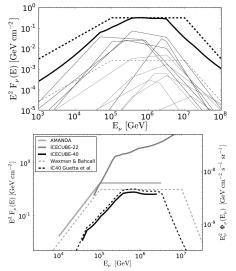

from [PB, HÜMMER, AND WINTER, PHYS. REV. **D83**, 067303 (2011)]

GRB2012

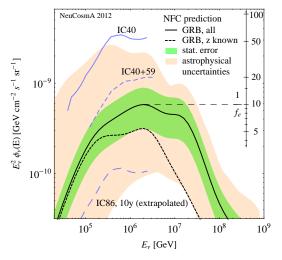



Further production modes

u_{μ} flux after flavor mixing


See also [MURASE AND NAGATAKI, PHYS. REV. **D73**, 063002 (2006)], [KASHTI AND WAXMAN, PHYS. REV. LETT. **95**, 181101 (2005)], [ASANO AND NAGATAKI, ASTROPHYS. J. **640**, L9 (2006)], [LIPARI, LUSIGNOLI, AND MELONI, PHYS. REV. **D75**, 123005 (2007)].

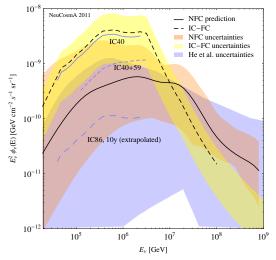
IceCube-40 GRB sample


Experimental realization:

- 117 observed bursts, between April 2008 and May 2009
- Individual neutrino spectra stacked
- Parameters measured or standard value
- Diffuse limit for 667 bursts per year

from [Abbasi et al., Phys. Rev. Lett. **106**, 141101 (2011)]

Result of re-computation

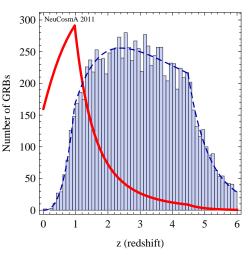


- Significantly reduced prediction
- Uncertainties of astrophysical parameters; tested ranges: $t_v = 0.001 0.1 \text{ s}$, $\Gamma = 200 500$, $\alpha_p = 1.8 2.2$, and $\epsilon_B/\epsilon_e = 0.1 10$
- Conservative bounds only with known parameters, here: known redshifts
- Additional uncertainty from statistics in stacking analysis

from [HÜMMER, PB, AND WINTER, ARXIV:1112.1076, ACCEPTED FOR PUBLICATION IN PHYS. REV. LETT.]

Uncertainties for different computations

- IceCube: based on [GUETTA, SPADA, AND WAXMAN, ASTROPHYS. J. 559, 101 (2001)]: origin of target photons fixed (synchrotron, IC scattering)
- He et al.: most general assumption with emission radius as free parameter; includes possibilities of other models (dissipative photosphere, magnetic reconnection...)
- Hümmer et al.: uncertainties of parameters in basic fireball model, target photon spectrum from observation


Data taken from [ICECUBE COLLABORATION, NATURE 484, 351 (2012)], [HÜMMER, PB, AND WINTER, ARXIV:1112.1076], AND [HE, LIU, WANG, NAGATAKI, MURASE, AND DAI, ARXIV:1204.0857].

Re-computation of IC40 analysis Statistics effects

Aggregation of fluxes

- Diffuse flux = result of large number of (unresolved) individual sources
- GRB rate follows SFR
- *z* decoupled from other parameters
- General scaling: $F \propto d_L^{-2}$

from [PB, HÜMMER, AND WINTER, ASTROPART. PHYS. 35, 508 (2012)]

Single burst detection probability estimate

- Assumption: Diffuse flux from 10000 bursts is at the level of the WB flux (1/10 of WB), leading to a certain number of events in the full IceCube detector during 10 years of operation.
- **Question:** How near would a single burst have to be to lead to at least 3 events?
- Answer: Burst has to be at most at $z_{max} = 0.14$ ($z_{max} = 0.05$). The probability to have at least one such a close burst is about 40% (2%).

from [PB, HÜMMER, AND WINTER, ASTROPART. PHYS. 35, 508 (2012)]

Summary

- Standard neutrino flux shape should be revised.
- Simulation of diffuse flux is model-dependent.
- Numerical re-analysis of IC40 GRB neutrino prediction is significantly lower than original prediction.
- Fireball model not ruled out yet.
- 10 years of IC86 data should give answer.

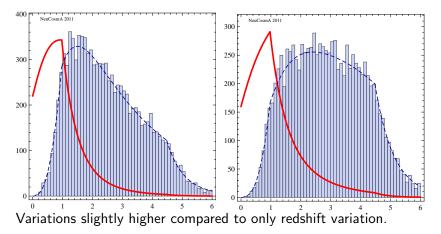
Back-up slides

Contributions to the full photohadronic cross section

 10^{-} Contributions to $(\nu_{\mu} + \bar{\nu}_{\mu})$ flux NeuCosmA 2010 from π^{\pm} decay divided in: Total flux • $\Delta(1232)$ -resonance $g^2 \cdot \phi_{\nu_{\mu} + \overline{\nu}_{\mu}} / (\text{GeV sr}^{-1} s^{-1} \text{cm}^{-2})$ Multi π t-channel 10^{-8} Higher resonances WB Δ^+ -approx t-channel (direct) Higher resonance production) 10^{-9} WB flux Δ^+ (1232) only High energy processes (multiple π) from [PB, S. HÜMMER, AND W. WINTER, PHYS. REV. D83, 067303 (2011)] 10^{-10} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} E/GeV

Especially "Multi π " contribution leads to change of flux shape; neutrino flux higher by up to a factor of 3 compared to WB treatment

P. Baerwald

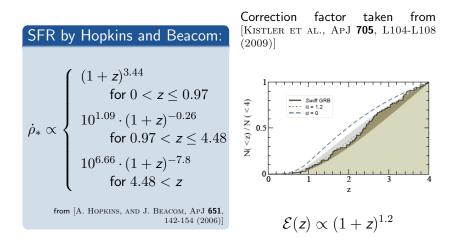

GRB2012

Effect of minimal detectable flux

All L

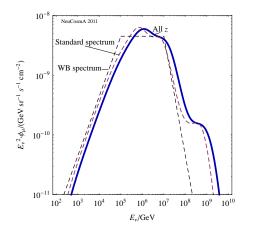
$$L>10^{51}\,\mathrm{erg/s}$$

Used inputs


- $\bullet~{\rm Proton}$ spectrum $N_p^{'}(E^{'}) \propto E^{'-2}$
- Photon spectrum resembling (simplified) Band function with parameters α , β , and $E_{\gamma,\text{break}}$
- Contributions to $\sigma_{p\gamma}$ from $\Delta(1232)$ -resonance, higher resonances, *t*-channel (direct production), and high energy processes (multiple π)
- Decays of $\pi^{\pm},\,\mu^{\pm},\,n,$ and K^+ considered, in case of μ^{\pm} including helicity dependence

[P. LIPARI, M. LUSIGNOLI, AND D. MELONI, PHYS. Rev. D75, 123005 (2007)]

- Simple neutrino mixing including three mass eigenstates and $\theta_{13}=0$
- $\bullet\,$ Normalization at the end matched to WB GRB ν_{μ} flux bound

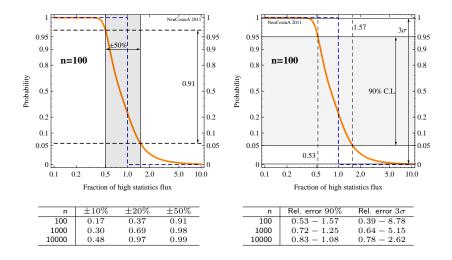


GRB rate from corrected SFR by Hopkins and Beacom

Resulting aggregated flux

- Peak contribution from bursts at z ≤ 1, few close bursts dominate
- Leads to shift to higher energies compared to single burst (with assumed z = 2)
- Characteristic features of single burst flux shape are preserved
- Analysis of other source parameters showed that only the magnetic field can wash out these features

Result of statistical analysis


Simulated $100\,000$ samples of n bursts with different redshift, and extrapolated flux limits from stacked flux. Analysis of resulting limits gave the results:

\overline{n}	Rel. error 90%	Rel. error 3σ
100	0.53 - 1.57	0.39 - 8.78
1000	0.72 - 1.25	0.64 - 5.15
10000	0.83 - 1.08	0.78 - 2.62

- Variation of extrapolated bound for 100 bursts (comparable with the 117 bursts from IceCube) still too high to rule out the (most basic) fireball model due to statistics.
- For variation of multiple parameters effect gets even stronger.
- However, additional effects, such as bias through minimal observable flux when considering simultaneous variation of redshift and luminosity, reduce uncertainty compared to independent variation case.

Picked $100\,000$ samples with different redshifts according to redshift distribution shown earlier for each sample size.

