The Supernovae of Gamma-ray Bursts

David Bersier
Astrophysics Research Institute
Liverpool John Moores University
The SN connection

The connection has been on everyone's mind for a long time (Colgate 1969)

Became a belief with GRB980425 ≡ SN 1998bw (Galama+ 1998)

Proof with GRB030329 ≡ SN 2003dh (Stanek+ 2003, Hjorth+ 2003)
Zeh et al (2004): in every case where we can see a bump, a bump has been seen.

SN light curves tend to resemble SN 1998bw (e.g. Ferrero+ 2006, Cano+ 2010)
Where we are now

<table>
<thead>
<tr>
<th>GRB/XRF Designation</th>
<th>z</th>
<th>Evidence</th>
<th>Comments</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>970228</td>
<td>0.695</td>
<td>C</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>980326</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>980425</td>
<td>0.0085</td>
<td>A</td>
<td>spectroscopic SN</td>
<td>5</td>
</tr>
<tr>
<td>990712</td>
<td>0.433</td>
<td>C</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>991208</td>
<td>0.706</td>
<td>E</td>
<td>low significance</td>
<td>7</td>
</tr>
<tr>
<td>000911</td>
<td>1.058</td>
<td>E</td>
<td>low significance</td>
<td>8,9</td>
</tr>
<tr>
<td>011121</td>
<td>0.362</td>
<td>B</td>
<td>spectral features</td>
<td>10,11,12</td>
</tr>
<tr>
<td>020305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020405</td>
<td>0.691</td>
<td>C</td>
<td>spectral SN</td>
<td></td>
</tr>
<tr>
<td>020410</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>020903</td>
<td>0.251</td>
<td>B</td>
<td>spectral features</td>
<td>17,18</td>
</tr>
<tr>
<td>021211</td>
<td>1.006</td>
<td>B</td>
<td>spectral features</td>
<td>19</td>
</tr>
<tr>
<td>030329</td>
<td>0.1685</td>
<td>A</td>
<td>spectroscopic SN</td>
<td>20,21,22</td>
</tr>
<tr>
<td>030723</td>
<td></td>
<td></td>
<td>red bump, X-ray excess</td>
<td>23,24</td>
</tr>
<tr>
<td>031203</td>
<td>0.1055</td>
<td>A</td>
<td>spectroscopic SN</td>
<td>25</td>
</tr>
<tr>
<td>040924</td>
<td>0.859</td>
<td>C</td>
<td></td>
<td>26,27</td>
</tr>
<tr>
<td>041006</td>
<td>0.716</td>
<td>C</td>
<td></td>
<td>26,28</td>
</tr>
<tr>
<td>050416A</td>
<td>0.654</td>
<td>D</td>
<td>poor sampling</td>
<td>29</td>
</tr>
<tr>
<td>050525A</td>
<td>0.606</td>
<td>B</td>
<td>spectral features</td>
<td>30</td>
</tr>
<tr>
<td>050824</td>
<td>0.828</td>
<td>E</td>
<td>low significance</td>
<td>31</td>
</tr>
<tr>
<td>060218</td>
<td>0.0334</td>
<td>A</td>
<td>spectroscopic SN</td>
<td>32,33,34</td>
</tr>
<tr>
<td>060729</td>
<td>0.543</td>
<td>E</td>
<td>afterglow dominated</td>
<td>35,36</td>
</tr>
<tr>
<td>070419A</td>
<td>0.971</td>
<td>D</td>
<td>poor sampling</td>
<td>35,37,38</td>
</tr>
<tr>
<td>080319B</td>
<td>0.938</td>
<td>C</td>
<td>multiple color bump</td>
<td>35,39,40,41</td>
</tr>
<tr>
<td>081007</td>
<td>0.530</td>
<td>B</td>
<td>spectral features</td>
<td>42,43,44</td>
</tr>
<tr>
<td>090618</td>
<td>0.54</td>
<td>C</td>
<td></td>
<td>36,45</td>
</tr>
<tr>
<td>091127</td>
<td>0.490</td>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100316D</td>
<td>0.0591</td>
<td>A</td>
<td>spectroscopic SN</td>
<td>46</td>
</tr>
<tr>
<td>100418A</td>
<td>0.624</td>
<td>D</td>
<td></td>
<td>47,48</td>
</tr>
<tr>
<td>101219B</td>
<td>0.552</td>
<td>B</td>
<td>spectral features</td>
<td>49</td>
</tr>
</tbody>
</table>

120422A 2012bz 0.28 A spectroscopic SN

(Hjorth & Bloom 2011)
SNe of GRBs are **broad-lined**.

More **energetic** and slightly more **luminous** than “average” SNIc (but some upper limits).

\[
E_{\text{SN}} \sim 2 - 60 \times 10^{51} \text{ erg} \\
M_{\text{Ni}}^{56} \sim 0.1 - 0.7 \, M_\odot \\
M_{\text{ej}} \sim 2 - 13 \, M_\odot \\
M_{\text{ZAMS}} \sim 20 - 45 \, M_\odot
\]
Cautionary tales

Initial claim for a SN (Hill+ 2009) but may well be afterglow behavior.

2-3 measurements around SN peak are not enough. Need to go well beyond peak.
A bump (or absence of) on a light curve is not enough. Need careful analysis of AG+SN. Also need spectroscopy.
GRB101225: merger of GRB101NS-He star (Thöne+ 2011) or comet+NS (Campana+ 2011).

Spectroscopy! (again)
Even if you do everything right...

GRB060505, GRB060614 (Fynbo et al. 2006, Gal-Yam+ 2006, Della Valle+ 2006). Other GRB/XRF without a SN (e.g. Levan+ 2005, Soderberg+ 2005)
SNe-less GRBs

It may well be possible to make a GRB (relativistic jet) without a bright SN (e.g. Tominaga+ 2007)

We should not be too surprised to find GRBs *without* a SN.

This may point to (slightly?) different progenitors/scenarios (think of long/short dichotomy)
Similarities and differences between GRB/SN and local SNe

GRBs come from exploding massive stars: knowledge we can use.

To explain the SN we see with GRB – and those we don't see, it pays to put them in the more general context of all SNe

[Graph showing fraction vs. peak magnitude (M_V)]
Similarities and differences between GRB/SN and local SNe

In a global picture of the fate of massive stars, we want to know where GRBs are and how they fit in this picture.

GRBs we see and those we don't

Only a few % of SNe Ib/c can have a GRB (from late time radio brightness, e.g. Soderberg+ 2006).

Radio observations may become a better way to find nearby GRBs. (Soderberg+ 2010)
Locations of SN Ic and GRBs

GRBs and SN Ic are more concentrated than the light. Distributions are compatible whereas GRBs and SN II come from different populations (e.g. Kelly+ 2008).
Metallicity

Kelly & Kirshner 2011

This is in line with what we see for GRBs (but see Savaglio+ 2012)
SNe Ic-BL are more metal-poor than SNe Ic. (Most) GRB/SNe are more metal-poor than SNe Ic.

What do we want to achieve? No need for another bump-on-a-lightcurve. Five gold standard cases but spectroscopy is always needed.

Analysis of LC+spectra to estimate explosion parameters → MS mass of progenitor

Radio monitoring of SNe is a novel way to find nearby GRBs.

There may well be more than one way to make a GRB; there may well be more than one way to make a SN. Metallicity, mass and rotation of progenitor can all play a role.

Progress will also come from observations of nearby SNe (PS, PTF, LSQ, LSST). The parameter space for making ccSNe is large, GRBs occupy a small fraction. Populating it with SNe will “corner” the GRBs.
HIDDEN SLIDES
The supernova connection (1)

GRB 980425: \(z=0.0085\), underluminous in \(\gamma\)-rays by several orders of magnitude.

No optical counterpart but a Type Ic SN.

It was a hyper energetic SN Ic (broad lined).

Connection GRB-supernova?
Theoretical possibility (collapsar, Woosley 1993)
But weak GRB, bright SN. Red herring?
The supernova connection (2)

GRB 030329: z=0.1685, spectroscopy possible

Unambiguous SN Ic signature
(Stanek et al 2003, Hjorth et al 2003)
Matheson et al. (2003): Spectral evolution of SN 2003dh very similar to SN 1998bw

Spectroscopic evidence: 980425, 030329, 031203, (020903), 060218, (081007), 100316D

GRBs are associated with energetic SNe I/c
What are these bursts?

Are they short or long? 060614 lag (and light curve?) points towards short (Gehrels+ 2006). GRB060505 looks long (McBreen+ 2008).

Are these bursts red herrings? Are they a new class?

Need to find more of these!

May be the only EM signature of some stellar explosions.

Actually possible to explode a star without making Ni (< 1% M⊙).

May be possible to make a GRB without making radioactive elements.
Local SNe Ic are in metal-rich galaxies.

Metallicity may well be what separates GRBs and normal SNIc, but selection effect?

(Modjaz et al. 2008, Stanek et al 2006)

SN 2009bb: relativistic outflow, $[\text{O/H}]=9.0$, $M_B=-20$
Magnetar-powered supernovae

Magnetar with $B_{14}>1$ G, $P \sim$ few ms formed when a massive star collapses.

Magnetic energy deposited at bottom of ejecta, can power the SN.

Variety of rise/decay time and light curve shape. After a few hundred days, decay is not exponential. SN 1998bw is exponential. (Kasen & Bildsten 2009; Woosley 2009)
For $z \leq 1$: GRB hosts fainter and smaller than cc SNe hosts (Fruchter et al 2006; see also James & Anderson 2006)
Position of GRBs and cc SNe on their hosts

Order all host pixels from brightest to faintest. Then ask: where does the GRB or SN fall?

- GRBs
- CC SNe

CC SNe follow the light

GRBs are much more likely to fall on a bright pixel, maybe even the brightest pixel (Fruchter et al 2006)
The supernova zoo

Two basic types:

* **Ia**: Thermonuclear explosion of a white dwarf

* **Ibc, II**: Core collapse of a massive (M>8M☉) star
Energetic transients: from chaos to simplicity?

Energy in γ

GRB+SN 030329

XRF+SN 020903 060218, 100316D

weak GRB+SN 980425, 080109

SN 2008D (Ib)

GRB, no SN 060614

060614 may have a SN after all

Do SN 2008D and SN 2008ha fit in here or are they false clues?

SN 2008ha?

SN energy

Does 2008D fit
Is it another false

Simplicity is tempting….
Rates

Rate calculations, accounting for GRB beaming, SN type, instrument sensitivity, etc. are still uncertain. Order of magnitude seems correct though.

Podsiadlowski+ (2004) estimated these rates: \[R(\text{HN}) \approx R(\text{GRB}) \]
\[R(\text{HN}) \text{ might be overestimated (Guetta, Della Valle 2007)} \]

<table>
<thead>
<tr>
<th>Objects</th>
<th>Rate (yr(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core-collapse SNe</td>
<td>(7 \times 10^{-3})</td>
</tr>
<tr>
<td>Radio pulsars (Galactic)</td>
<td>(4 \times 10^{-2})</td>
</tr>
<tr>
<td>SNe Ib/c</td>
<td>(1 \times 10^{-3})</td>
</tr>
<tr>
<td>HNe</td>
<td>(\sim 10^{-5})</td>
</tr>
<tr>
<td>GRBs (for different effective beaming angles (\theta)):</td>
<td></td>
</tr>
<tr>
<td>(\theta = 1^\circ)</td>
<td>(6 \times 10^{-4})</td>
</tr>
<tr>
<td>(\theta = 5^\circ)</td>
<td>(3 \times 10^{-5})</td>
</tr>
<tr>
<td>(\theta = 15^\circ)</td>
<td>(3 \times 10^{-6})</td>
</tr>
<tr>
<td>Massive stars:</td>
<td></td>
</tr>
<tr>
<td>(> 20\ M_\odot)</td>
<td>(2 \times 10^{-3})</td>
</tr>
<tr>
<td>(> 40\ M_\odot)</td>
<td>(6 \times 10^{-4})</td>
</tr>
<tr>
<td>(> 80\ M_\odot)</td>
<td>(2 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Likely to depend on redshift (even if not tracing SFH, e.g. Yoon+ 2006).
From false(?) clues and confusion...

GRB060614 & GRB060505 (and some XRFs): may be exploding stars without Ni.

SN 2009bb: SNIc with radio strong emission (Soderberg+ 2010) but has high metallicity (Levesque+ 2010). Does it really tell us something about GRBs, or about SNe?

Theory: either too easy or very hard to make GRBs. Must fit observed rates and other constraints on massive star evolution.