The Supernovae of Gamma-ray Bursts

David Bersier Astrophysics Research Institute Liverpool John Moores University

The SN connection

The connection has been on everyone's mind for a long time (Colgate 1969) Became a belief with GRB980425 = SN 1998bw (Galama+ 1998) Proof with GRB030329 = SN 2003dh (Stanek+ 2003, Hjorth+ 2003)

Bumps on light curves

Zeh et al (2004): in every case where we can see a bump, a bump has been seen. SN light curves tend to resemble SN 1998bw (e.g. Ferrero+ 2006, Cano+ 2010)

Where we are now

GRB/XRF	SN Designation	z	Evidence	Comments	Refs.
970228		0.695	С		1,2
980326			D	red bump	3,4
980425	1998bw	0.0085	A	spectroscopic SN	5
990712		0.433	C		6
991208		0.706	E	low significance	7
000911		1.058	E	low significance	8,9
011121	$2001 \mathrm{ke}$	0.362	В	spectral features	10,11,12
020305			E	not fitted by GRB-SNe	13
020405		0.691	C	red bump	14,15
020410			D	discovered via bump	16
020903		0.251	В	spectral features	17,18
021211	2002lt	1.006	В	spectral features	19
030329	2003dh	0.1685	Α	spectroscopic SN	20,21,22
030723			D	red bump, X-ray excess	23,24
031203	2003lw	0.1055	Α	spectroscopic SN	25
040924		0.859	С		26,27
041006		0.716	\mathbf{C}		26,28
050416A		0.654	D	poor sampling	29
050525A	2005nc	0.606	В	spectral features	30
050824		0.828	E	low significance	31
060218	2006aj	0.0334	Α	spectroscopic SN	32,33,34
060729	-	0.543	\mathbf{E}	afterglow dominated	35,36
070419A		0.971	D	poor sampling	35,37,38
080319B		0.938	\mathbf{C}	multiple color bump	35,39,40,41
081007	2008hw	0.530	В	spectral features	42,43,44
090618		0.54	\mathbf{C}	-	36,45
091127	2009nz	0.490	\mathbf{C}	spectroscopic SN	46
100316D	2010bh	0.0591	Α	spectroscopic SN	47,48
100418A		0.624	D		49
101219B		0.552	В	spectral features	50, 51, 52
120422A	2012bz	0.28	А	spectroscopic SN	

(Hjorth & Bloom 2011)

SNe brightnesses and energies

Olivares+ 2012

Cautionary tales

GRB070419A at z=0.97 (Melandri+ 2009)

Initial claim for a SN (Hill+ 2009) but may well be afterglow behavior.

2-3 measurements around SN peak are not enough. Need to go well beyond peak.

A bump (or absence of) on a light curve is **not enough**. Need careful analysis of **AG+SN**. Also need **spectroscopy**.

GRB101225: merger of GRB101NS-He star (Thőne+ 2011) or comet+NS (Campana+ 2011). Spectroscopy! (again)

Even if you do everything right...

GRB060505, GRB060614 (Fynbo et al. 2006, Gal-Yam+ 2006, Della Valle+ 2006). Other GRB/XRF without a SN (e.g. Levan+ 2005, Soderberg+ 2005)

SNe-less GRBs

It may well be possible to make a GRB (relativistic jet) without a bright SN (e.g. Tominaga+ 2007)

We should not be too surprised to find GRBs *without* a SN.

This may point to (slightly?) different progenitors/scenarios (think of long/ short dichotomy)

Similarities and differences between GRB/SN and local SNe

GRBs come from exploding massive stars: knowledge we can use.

To explain the SN we see with GRB – and those we don't see, it pays to put them in the more general context of all SNe

Similarities and differences between GRB/SN and local SNe

Yoon, Langer, Norman (2006)

GRBs we see and those we don't

Only a few % of SNe lb/c can have a GRB (from late time radio brightness, e.g. Soderberg+ 2006).

Radio observations may become a better way to find nearby GRBs. (Soderberg+ 2010)

Locations of SN Ic and GRBs

GRBs and SN Ic are more concentrated than the light. Distributions are compatible whereas GRBs and SN II come from different populations (e.g. Kelly+ 2008).

Kelly & Kirshner 2011

This is in line with what we see for GRBs (but see Savaglio+ 2012)

Outlook

SNe Ic-BL are more metal-poor than SNe Ic. (Most) GRB/SNe are more metal-poor than SNe Ic.

What do we want to achieve? No need for another bump-on-a-lightcurve. Five gold standard cases but spectroscopy is always needed.

Analysis of LC+spectra to estimate explosion parameters \rightarrow MS mass of progenitor

Radio monitoring of SNe is a novel way to find nearby GRBs.

There may well be more than one way to make a GRB; there may well be more than one way to make a SN. Metallicity, mass and rotation of progenitor can all play a role.

Progress will also come from observations of nearby SNe (PS, PTF, LSQ, LSST). The parameter space for making ccSNe is large, GRBs occupy a small fraction. Populating it with SNe will "corner" the GRBs.

HIDDEN SLIDES

The supernova connection (1)

GRB 980425: z=0.0085, *underluminous* in γ -rays by several orders of magnitude.

No optical counterpart but a Type Ic SN.

It was a hyper energetic SN Ic (broad lined).

Galama et al (1998)

Connection GRB-supernova?

Theoretical possibility (collapsar, Woosley 1993) But weak GRB, bright SN. Red herring?

The supernova connection (2)

GRB 030329: z=0.1685, spectroscopy possible

(Stanek et al 2003, Hjorth et al 2003)

GRB 030329

Matheson et al. (2003): Spectral evolution of SN 2003dh very similar to SN 1998bw

Spectrosopic evidence: 980425, 030329, 031203, (020903), 060218, (081007), 100316D

GRBs are associated with energetic SNe I/c

What are these bursts?

May be the only EM signature of some stellar explosions.

Actually possible to explode a star without making Ni (< 1% M $_{\odot}$).

May be possible to make a GRB *without* making radioactive elements.

Local SN Ic and GRBs

Local SNe Ic are in metal-rich galaxies.

Metallicity may well be what separates GRBs and normal SNIc, but selection effect?

(Modjaz et al. 2008, Stanek et al 2006)

SN 2009bb: relativistic outflow, [O/H]=9.0, M_B =-20

Magnetar-powered supernovae

Magnetar with B₁₄>1 G, P \sim few ms formed when a massive star collapses.

Magnetic energy deposited at bottom of ejecta, can power the SN.

Variety of rise/decay time and light curve shape. After a few hundred days, decay is not exponential. SN 1998bw is exponential. (Kasen & Bildsten 2009; Woosley 2009)

GRB hosts with HST

Core-collapse hosts with HST

For $z \le 1$:

GRB hosts fainter and smaller than cc SNe hosts (Fruchter et al 2006; see also James & Anderson 2006)

Position of GRBs and cc SNe on their hosts

Order all host pixels from brightest to faintest. Then ask: where does the GRB or SN fall? GRBs CC SNe

CC SNe follow the light

GRBs are much more likely to fall on a bright pixel, maybe even the brightest pixel (Fruchter et al 2006)

The supernova zoo

Sketches of spectra from Carroll & Ostlie, data attributed to Thomas Matheson of National Optical Astronomy Observatory.

Two basic types:

Ia: Thermonuclear explosion of a white dwarf

lbc, II: Core collapse of a massive (M>8 M_{\odot}) star

Energetic transients: from chaos to simplicity?

Simplicity is tempting....

Rates

Rate calculations, accounting for GRB beaming, SN type, instrument sensitivity, etc. are still uncertain. Order of magnitude seems correct though.

Podsiadlowski+ (2004) estimated these rates: $R(HN) \approx R(GRB)$ R(HN) might be overestimated (Guetta, Della Valle 2007)

Objects	Rate (yr ⁻¹)
Core-collapse SNe	7×10^{-3}
Radio pulsars (Galactic)	4×10^{-2}
SNe Ib/c	1×10^{-3}
HNe	$\sim 10^{-5}$
GRBs (for different effective beaming angles θ):	
$\theta = 1^{\circ}$	6×10^{-4}
$\theta = 5^{\circ}$	3×10^{-5}
$\theta = 15^{\circ}$	3×10^{-6}
Massive stars:	
$>20 M_{\odot}$	2×10^{-3}
>40 <i>M</i> _o	6×10^{-4}
$>80 M_{\odot}$	2×10^{-4}

TABLE 1 Rates in an Average Galaxy

Likely to depend on redshift (even if not tracing SFH, e.g. Yoon+ 2006).

From false(?) clues and confusion...

GRB060614 & GRB060505 (and some XRFs): may be exploding stars without Ni.

SN 2009bb: SNIc with radio strong emission (Soderberg+ 2010) but has high metallicity (Levesque+ 2010). Does it really tell us something about GRBs, or about SNe?

Theory: either too easy or very hard to make GRBs. Must fit observed rates and other constraints on massive star evolution.