

MULTIWAVELENGTH OBSERVATIONS OF GRB 110731A GEV EMISSION FROM ONSET TO AFTERGLOW

> Johan Bregeon INFN–Pisa johan.bregeon@pi.infn.it

on behalf of the Fermi–LAT collaboration

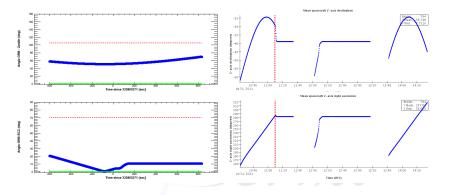
Munich, May 8, 2012

OUTLINE...

Observations

- Fermi Autonomous Repoint Request
- Fermi data quality and automatic science processing
- Swift, GROND and MOA

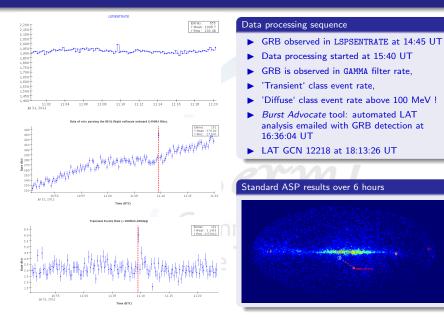
Fermi prompt emission results


- Light curves
- Spectral analysis

Multi–wavelength Afterglow study

- Multi–wavelength light curves
- Broadband SEDs
- Forward shock in a wind model

Space l elescope


Fermi Observations and ARR

Fermi Autonomous Repoint Request

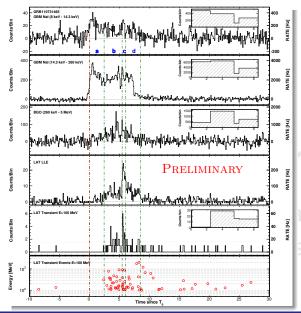
- ▶ GBM Trigger at 11:09:29.94 UT (*T*₀)
- ▶ Burst well in the field of view $\sim 6^{\circ}$
- Earth limb far away (little contamination)
- ▶ South Atlantic Anomaly gap only ~30 minutes after the burst
- Optimal observations for 2.5 hours

DATA QUALITY AND AUTOMATIC SCIENCE

Multi-wavelength observations

Swift observations

- ▶ BAT trigger at 11:09:30.45 UT ~ T₀ + 0.5 s
- Swift slewed immediately to the burst: XRT and UVOT observations from $\sim T_0 + 56$ s
- XRT observations for 24 days: exposure of 600 s in Window Timing mode and 75 ks in Photon Counting mode.
- UVOT observations: short exposure with the v filter during the settling phase, 'finding chart' exposure with the White filter lasting 147 s and usual procedure of cycling through its 3 visible filters.
- Swift/UVOT (Ra, Dec) = (280.50413, -28.537167) deg. ± 0.5 arcsec. (90%)


MOA observations

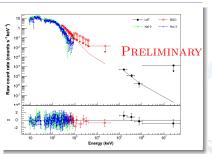
- observations began 3.3 min after the Swift trigger
- 61 cm Boller & Chivens telescope at the Mt John University Observatory (New Zealand)
- I and V band images with 60 s exposure times followed by 120 s exposures until for 105 min. after the trigger

GROND observations

- 2.2 m MPG/ESO telescope at La Silla Observatory, Chile
- Observations 2.74 d after the trigger with GROND, the seven-color imager
- Two 30-minute observation blocks were obtained
- ► Integration time of 4500 s in g'r'i'z' and 3600 s in JHK
- Lots of good quality data
- Observations from T_0 to $T_0 + 2.7$ d
- More data exist: Konus–Wind,
 Suzaku, EVLA, MITSuME
 Ishigakijima, Chandra...
- Gemini–North redshift: z = 2.83 (GCN 12225)

Fermi LAT/GBM PROMPT PHASE LIGHT CURVE

• $T_{90,GBM} = 7.3 \pm 0.3 \text{ s}$ (50 keV to 300 keV)


•
$$T_{90,LAT} = 14.33^{-2.55}_{+16.79} s$$

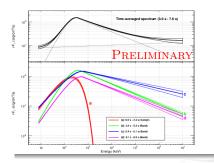
- ▶ fluence (10 keV-10 GeV): 3.08 ± 0.10 10⁻⁵ erg.cm⁻²
- $E_{\rm iso} = 7.58^{+0.01}_{-0.01} \times 10^{53}$ erg (10 keV-10 GeV)
- high energy delayed on-set (E> 100 MeV): $T_{05,LAT} = 2.51^{+0.27}_{-0.6}$ s
- peak in flux from \sim keV to \sim 100 MeV at $T_0 + 5.5$ s
- Bayesian Blocks bins a,b,c,d: (0., 2.44, 5.44, 6.06, 8.52)
- FWMH of GBM pulses $\Delta t = 0.350 \pm 0.022 \text{ s}$
- highest energy photon: 2.0 GeV event at T₀ + 8.270 s

Johan Bregeon (INFN)

Prompt phase spectral analysis (1)

Count spectrum BAND+PL model fit

Fitting model	BAND	BAND+PL	COMP+PL	COMP+COMP
E_0 [keV]	349^{+31}_{-28}	155^{+20}_{-13}	198.8^{+21}_{-18}	191.1^{+21}_{-18}
α	$-0.74^{+0.04}_{-0.04}$	$0.03^{+0.15}_{-0.12}$	$-0.14^{+0.10}_{-0.10}$	$-0.10^{+0.12}_{-0.12}$
β	$-2.31^{+0.03}_{-0.03}$	$-2.40^{+0.10}_{-0.20}$	-	-
extra component				
γ	-	$-1.96^{+0.09}_{-0.05}$	$-1.89^{+0.02}_{-0.02}$	$-1.79^{+0.03}_{-0.03}$
Cutoff Energy [MeV]	-	-	-	390^{+220}_{-120}
Fluence $[10^5 \text{ erg cm}^{-2}]$	$3.33^{+0.05}_{-0.05}$	$3.08^{+0.10}_{-0.10}$	$2.50^{+0.10}_{-0.10}$	$2.44^{+0.05}_{-0.08}$
PG-STAT / DOF	440.7 / 354	405.5 / 352	409.0 / 353	390/352
ΔPG -STAT / DOF	-	35.2 / 2	31.7 / 1	50.7 / 2

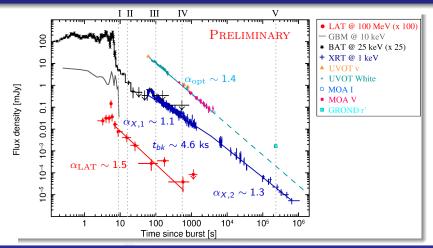

Joint-fit results for the different models

Joint-fit from $T_{05,LAT}$ to $T_{95,GBM}$: $[T_0 + 3.0 \text{ s}; T_0 + 7.56 \text{ s}]$

- ▶ very significant power–law extra–component: \sim 5.5 σ
- ► hint of a high energy cutoff in the power-law extra-component: COMP+COMP improves the fit by ~ 4 σ over BAND+PL
- $\rightarrow\,$ pair creation hypothesis and variability : $\Gamma_{jet} = 530 \pm 10$
 - single zone steady state model with homogneous photon distribution
 - ▶ folding energy 390^{+220}_{-120} MeV, variability: $\Delta t = 0.428 \pm 0.025$ s

Prompt phase spectral analysis (2)

νF_{ν} for the best fit models

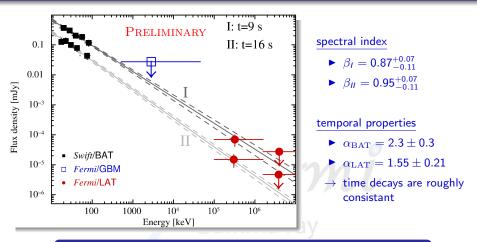


Joint-fit results for each time interval

Time interval from T_0 [s]	a (0 2.44)	b (2.44 5.44)	c (5.44 6.06)	d (6.06 8.52)
Best model	COMP	BAND	BAND	BAND
E_0 [keV]	188^{+22}_{-17}	285^{+30}_{-26}	683^{+270}_{-180}	446^{+91}_{-72}
α /Index	$-0.92^{+0.05}_{-0.05}$	$-0.64^{+0.05}_{-0.05}$	$-1.15^{+0.05}_{-0.06}$	$-0.86^{+0.06}_{-0.06}$
β	-	$-2.34^{+0.04}_{-0.04}$	$-2.18^{+0.05}_{-0.06}$	$-2.31^{+0.04}_{-0.05}$
Fluence $[10^{-5} \mathrm{erg} \mathrm{cm}^{-2}]$	$0.58^{+0.05}_{-0.06}$	$2.05^{+0.04}_{-0.04}$	$0.59^{+0.03}_{-0.03}$	$1.10^{+0.04}_{-0.04}$
PG-STAT (DOF)				
BAND (354)	-	417.4	365.3	389.1
COMP (353)	378.6	-	-	-
BAND+PL (352)	_	397.9	363.2	375.4
COMP+PL (353)	_	399.7	365.3	380.2
COMP+COMP (352)	-	389.8	360.2	377.7

- Being conservative: best model is COMP in a and then BAND
- ▶ Hints of the power-law extra-component at 2–3 σ level in *b*, *d*
- ► LAT fluence is always 20–40% of the GBM fluence
- ▶ Why is the extra-component so weak in the flux peak in c?
- ightarrow Do we see the transition from the prompt to the afterglow ?
 - growing power-law extra-component through the burst,
 - becomes high energy extended emission during the afterglow ?

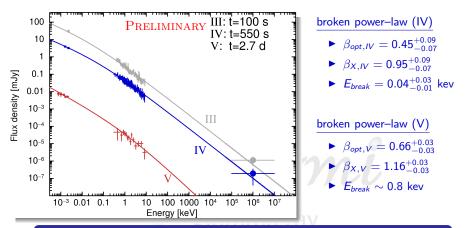
Multiwavelength light curve



Multi-wavelength observations: Opt.-GeV

- ▶ LAT flux peaks at T_0 + 5.5 s and then decays smoothly: detection up to $[T_0 + 227 \text{ s}; T_0 + 853.9 \text{ s}]$.
- Epochs I and II connect the prompt emission to the afterglow: contamination ?
- Epoch III shows X-ray flares, make it difficult to study (used for verification only)
- Epoch IV: optical flux decays faster than X-ray flux ($\alpha_{opt} \sim 1.4 > \alpha_{X,1} \sim 1.1$)

Johan Bregeon (INFN)


Spectral energy densities -1

SEDs early epochs

- Simple power-law fit from X-ray to γ -ray over 5 orders of magnitude
- Spectral index compatible with the measured X-ray spectral index β_X at later times
- Temporally extended GeV emission is compatible with afterglow emission
 - $ightarrow \,$ requires an afterglow on–set time before \sim T_0 + 8 s

Spectral energy densities -2

SEDs late time

- Simple power-law fits statistically acceptable, but large residuals for late times
- Broken power-law fits with tied parameters to test models
 - joint fit of epochs IV and V, cross-check with epoch III
 - ▶ $\beta_{opt} = \beta_X$ -0.5, $E_{break} \sim \sqrt{t}$, and tied host extinction and absorption
- \Rightarrow Broken power–law parameters favor a wind model with slow–cooling spectrum

GLOBAL PICTURE

- Prompt: delayed high energy emission, growing extra power-law component, temporally extended GeV emission
 - similar to other bright LAT bursts: GRB 090510, GRB 090902B, GRB 090926A
 - ~ 4 σ cutoff at ~ 400 MeV (weaker than for GRB 090926A): $\Gamma_{iet} = 530 \pm 10$ (internal shocks)
 - origin of the extra-component could be early afterglow emission from the forward shock

► Afterglow: jet in a wind environment with a slow-cooling spectrum

 epochs I and II: single power–law fit from X to GeV, fast–cooling regime ν_c < ν_m (e⁻ synch. freq.)

 $\rightarrow\,$ temporally extended GeV emission compatible with afterglow emission

- epoch III: re-brightening, X-ray flares, hard to study, change from fast- to slow-cooling regime
- ► epochs IV, V: optical decays faster than X, smoothly broken power–law fit with $\beta_{opt} = \beta_X - 0.5$ and $E_{break} \sim \sqrt{t}$
 - → parameters compatible with a wind environment, slow-cooling spectrum: $\beta_X = (2/3)\alpha_X + 1/3$, $\beta_{opt} = (2/3)\alpha_{opt} 1/3$, $\nu_{opt} < \nu_c < \nu_X$
- epoch V: steeper decrease of X-ray flux explained by cooling break, $\nu_c \sim \sqrt{t}$, approaching the X-ray band after $t_{break} \sim 4.6$ ks

CONCLUSIONS

- Paper to be submitted soon (contact authors: J. Bregeon, D. Gruber, D. Kocevsky, S. Razzaque, E. Troja, G. Vianello)
 - temporally extended GeV emission is compatible with afterglow emission
 - afterglow indicates a jet in a wind environment and a slow-cooling spectrum, with the following model parameters:
 - low magnetic field $\epsilon_B \sim 10^{-2}$
 - low radiative efficiency $\epsilon_E \sim 10^{-3}$
 - $\blacktriangleright~5$ times larger kinetic energy than gamma-ray energy, $E_k\sim 3\times 10^{54}~{\rm erg}$
 - bulk Lorentz factor: Γ_{jet} ~ 500
 - the coasting bulk Lorentz factor Γ_{jet} ~ 500 from the afterglow model is compatible with the value/lower limit obtained from the γγ opacity argument in the internal shocks of the prompt phase
- ► Lots of high quality data, very nice joint *Fermi–Swift* observations
- More can certainly be done with these data, and more data on this burst are available
- Many Thanks to the Fermi, Swift, GROND and MOA teams