

Fermi/Swift GRBs 2012

(Munich, May 2012)

Gamma-ray Bursts as Probes of the First Stars

Volker Bromm

The University of Texas at Austin

From the Dark Ages to the Cosmic Renaissance

FROM THE DARK AGES ...

(Larson & Bromm, Scientific American)

First Stars — Transition from Simplicity to Complexity

GRBs Probe the Very High Redshift Universe

Number vs. Redshift

Lamb & Reichart 2000 (also: Blain & Natarajan 2000; Bromm & Loeb 2002)

Extending the Redshift Barrier

(Courtesy: N. Tanvir)

• An ongoing race! GRBs likely to win!

Q: Are first stars suitable progenitors?

Progenitor: Requirements for Collapsar Engine (for long/soft GRBs)

1. Sufficiently massive to form central BH

2. Central core has to retain enough spin

3. Loss of H/He envelope possible (But see: Suwa & loka 2011)

Formation of a Population III Star (Stacy, Greif & Bromm 2010, MNRAS, 403, 45)

Pop III Star Formation: Growth by Accretion (Stacy, Greif & Bromm 2010, MNRAS, 403, 45)

Stellar mass vs. time

dM/dt vs. time

a dominant binary has formed (~ 40 and ~10 M_o)
 after ~5,000 yr of accretion

The First Stars: Final IMF

Numerical simulations

dN/dlogM

- Bromm, Coppi, & Larson (1999, 2002)
- Abel, Bryan, & Norman (2000, 2002)
- Nakamura & Umemura (2001, 2002)
- Yoshida et al. (2006, 2008); O' Shea & Norman (2007); Gao et al. (2007); Clark et al. (2011); Greif et al. (2011)

Rotation of Pop III Stars

- Poorly constrained
- After mass scale, most important parameter

GRB collapsar

Chemical mixing

Rotation of Pop III Stars (Stacy, Bromm & Loeb 2011, MNRAS, 413, 543)

- Pop III stars may rotate at close to break-up speed
- May experience strong mixing and die as collapsar

Progenitor: Requirements for Collapsar Engine (for long/soft GRBs)

3. Loss of H/He envelope?

New Picture for Pop III SF:

• (Ubiquitous) Disk Fragmentation \rightarrow small multiple

Pop III Star Formation: Disk Fragmentation

(Clark, Glover, Smith, Greif, Klessen & Bromm 2011, Science, 331, 1040)

Disk grows around primary sink

Disk is gravitationally unstable: small multiple forms

Pop III Star Formation: Disk Fragmentation (Clark, Glover, Smith, Greif, Klessen & Bromm 2011, Science, 331, 1040)

<u>Mass transfer rate vs. Radius</u>

- Disk is inevitably driven towards gravitational instability!

Q: How many bursts from high z?

Critical Metallicity for Low-mass Star Formation: (Bromm & Loeb 2003, Nature 425, 812)

- Abundance pattern:
- HE0107-5240, 1327-2326
- very Fe-poor
- very C/O-rich
- Pop III → Pop II:
- driven by: CII, OI (fine-structure transitions)
- Minimum abundances:
- [C/H] ~ -3.5
- [O/H] ~ -3.1
- Identify truly 2nd gen. stars!

Chemical Feedback: Enriching Early Universe

• Tornatore et al. 2007

Metals comprise increasing volume fraction →
 Pop III mode extinguished!

Modeling Cosmic SF History at High Redshift

SFR Density vs. z

SFR Density vs. z

Pop III mode — Small fraction of total SFRD

Deriving GRB Redshift Distribution

• e.g.: Bromm & Loeb 2006

$$\frac{dN_{\rm GRB}^{\rm obs}}{dz} = \psi_{\rm GRB}^{\rm obs}(z) \frac{\Delta t_{\rm obs}}{(1+z)} \frac{dV}{dz},$$

$$\psi_{\text{GRB}}^{\text{obs}}(z) = \eta_{\text{GRB}}\psi_*(z)\int_{L_{\text{lim}}(z)}^{\infty} p(L) dL.$$

GRB LF
GRB formation efficiency
~10⁻⁹ bursts per solar mass)

GRB Redshift Distribution

Swift GRB rate vs. z

See also:

- Daigne et al. 2006
- Langer & Norman 2006
- de Souza et al. 2011
- Campisi et al. 2011
- Ishida et al. 2011
- Elliott et al. 2012

(Bromm & Loeb 2006)

- ~10% of Swift bursts from z>5
- Expect of order 0.1 Pop III bursts per year

Q: Pop III circumburst environment?

Primordial HII Regions (Alvarez, Bromm, & Shapiro 2006, ApJ, 639, 621)

(proper)

Pop III circumburst density (Wang et al. 2012, to be submitted)

<u>n vs. radius</u>

<u>ı vs. radius</u>

Minihalo case

First-galaxy case

- In minihalos (Pop III.1): $n \leq 1 \text{ cm}^{-3}$
- In atomic cooling halos (Pop III.2): n > 10 cm⁻³

Pop III GRB Afterglow

redshift z (Wang et al. 2012, to be submitted; see also: Gou et al. 2004, Inoue et al. 2007)

6

15

20

redshift z

25

30

10

15

redshift z

- Assume standard shocked synchrotron theory
- Pop III bursts very bright, but no unique features

Q: How to probe early IGM?

Probing the History of Reionization

Probing the History of Reionization

-Use absorption in red damping wing of Lya (Barkana & Loeb 2004)

- GRB 050904 (z=6.3): Totani et al. 2006

Problem: Intrinsic (DLA) absorption may dominate

Pre-galactic Metal Enrichment (Greif et al. 2010, ApJ, 716, 510)

First Star Formation is highly clustered! (Johnson, Greif, & Bromm 2007, ApJ, 665, 85)

Probing Pre-galactic Metal Enrichment (Wang et al. 2012, to be submitted)

Probing Pre-galactic Metal Enrichment (Wang et al. 2012, to be submitted)

Type II SNe VMS (erg cm $^{-2}$ s $^{-1}$ Hz $^{-1}$) (erg cm⁻²s⁻¹Hz⁻¹) ∃e I⊢ H Si II SilVC 1**⊑Si ¦|** Fe II Fe II (erg cm⁻²s^{-′} Si IV 01 Fe II Lyman α 1E-26 ĊΙΙ Ъ ц́ ц Lyman α EW = 14.21Å (Å)^{22660²⁰⁰⁰⁰} 22670 25000 (2A3)0000 35000 40000 20000 2500% Å³⁰⁰⁰⁰ 35000 40000 ²²⁶⁵⁰λ

Even Pop III spectra likely show strong metal lines
Can distinguish between different Pop III SNe

Ο

The JANUS Mission (Lobster, SVOM, Origin)

- GRB locator
- On-board NIR telescope (+low-res spectroscopy)

→ Hunting down high-z GRBs

Perspectives:

 GRB cosmology holds tremendous promise

- Ideal signposts of the first stars and galaxies
- Ideal probes of early IGM
- Swift successor mission vitally important