DIFFICULTIES IN USING GRBS AS STANDARD CANDLES

ADAM GOLDSTEIN UNIVERSITY OF ALABAMA IN HUNTSVILLE

PROBLEMS

- Wide Range of Observed Properties
- Flux/Fluence intrinsically correlated with photon model parameters
- Luminosity (Energy) Indicators
- (Pseudo)redshift Predictions
- Emission Collimation
- Lorentz Factor

SIMULATIONS

- Have observed spectral parameter distributions (Goldstein et al. 2012; Goldstein et al. in prep.)
- Simulate GRB spectra based on observed Band model parameter distributions
- Simulate T₉₀ duration from observed BATSE distribution and redshift from the distribution of currently known bursts with redshift (Greiner, <u>http://www.mpe.mpg.de/~jcg/grbgen.html</u>)
- Use the simulations to perform correlative analysis

AMATI RELATION

- Simulate the relationship assuming no physical correlation
- Simulate the relationship assuming the Amati relation accounting for 3σ model dispersion

VALIDITY OF THE ÅMATI RELATION

 $E_{iso} \propto E_{peak}^{\eta}$

- K-S: Can reject Amati estimation of E_{iso} at 92% level
- Pearson: ~0% chance probability that the data E_{peak}-E_{iso} correlation is represented by Amati

VALIDITY OF THE YONETOKU RELATION

 $L_{iso} \propto E_{peak}^{\eta}$

- K-S: Can reject the estimation of L_{iso} from model intrinsics at 97% level
- Pearson: ~0% chance probability that the data E_{peak}-L_{iso} correlation is represented by Yonetoku

AMATI PSEUDO-REDSHIFTS

Comparison to observed redshifts

YONETOKU PSEUDO-REDSHIFTS

Simulated redshifts: ~9% fail

Comparison to observed redshifts

Cumulative distributions of pseudo-redshifts

JET COLLIMATION

LORENTZ FACTORS (BEST CASE SCENARIO)

$$F_{\gamma,obs} \approx L_{\gamma} \delta^4, \quad \delta = \frac{1}{\Gamma(1 - \beta \cos \theta_v)}$$

Assume Eddington mass limit: ~ 120 M_{\odot} \implies Let L_{γ} = L_{Edd} ~ 2 × 10⁴⁰ erg

$$\Gamma\left(1-\sqrt{1-\frac{1}{\Gamma^2}}\right) \approx \left(\frac{L_{Edd}}{4\pi d_L^2 F_{\gamma,obs}}\right)^{1/4} \sec \theta_v$$

Caveats:

- $F_{\gamma,obs}$ is detector-dependent
- z distribution may be biased
- GRBs are assumed to be SCs
- Beam Profile
- LF evolution

Result:

These distributions are likely narrower than in reality.

RECAP

- Wide range of observed properties: Result of viewing angle, jet angle, Lorentz factor, distance, etc.?
- The Amati relation could simply be a selection effect & a result of model intrinsics, or even a mixture of artificial and physical effects. Not well suited for estimating redshifts.
- The Yonetoku relation appears to have *some* statistical support, but the error propagation shows that it is not well suited for estimating redshifts
- Even taking into account jet collimation, the rest-frame energy can vary by multiple decades based on the variance in the photon model.
- Bulk Lorentz Factors could possibly vary by at least two orders of magnitude from burst to burst

BACKUP

YONETOKU RELATION

- Simulate the relationship assuming no physical correlation
- Simulate the relationship assuming the Yonetoku relation accounting for 3σ model

PSEUDO-REDSHIFTS

- Relations as a function of Z
- Amati rolls over ~3-5
- Ghirlanda rolls over ~8-11
- Yonetoku does not roll over if Index < 2

NOTE: THIS IS WHY ERROR PROPAGATION IS IMPORTANT

