

REST-FRAME PROPERTIES OF GBM GAMMA-RAY BURSTS

David Gruber on behalf of the Fermi GBM Team

SCIENTIFIC RATIONALE

- rest-frame properties crucial in understanding GRBs
- many rough correlations between various rest-frame properties already exist
- ultimate goals:
 - using GRBs for cosmology
 - having a luminosity indicator for every GRB

THE GBM INSTRUMENT

Strengths

- whole unocculted sky
- 8 keV 40 MeV
- great temporal resolution for triggered GRBs

Weakness

large localization uncertainties

GBM-GRBS IN NUMBERS

- 917 GRBs detected to date (plus at least 16 untriggered GRBs. See P-II-I5)
- ~ 0.70 GRBs/day or
 ~ I GRB/I.5 days
- 47 GRBs with z
 ≙ 5% of full sample

REDSHIFT DISTRIBUTION

- selection only based on z determination
- GBM sample consistent
 with full sample

THE DURATION

- T₉₀ method
- count space
- 100/(1+z) 500/(1+z) keV

 $\langle T_{90} \rangle = 28 \,\mathrm{s}$

THE PEAK ENERGY

- data taken from, and addtional analysis consistent with, *Goldstein et al.* 2012
- PL (7), COMP (25), BAND,
 (10), SBPL (5)
- mean E_{peak} ≈ 700 keV

- scatter is <u>considerably larger</u> as in Amati et al. 2009
- confirmed by Virgili et al. 2012

• L_p was determined on a 1.024 s and 0.064 s time scale for LGRBs and SGRBs, respectively

• L_p was determined on a 1.024 s and 0.064 s time scale for LGRBs and SGRBs, respectively

• L_p was determined on a 1.024 s and 0.064 s time scale for LGRBs and SGRBs, respectively

T90 REDSHIFT (NON) EVOLUTION

- No redshift evolution observed
- detector sensitivity? (Kocevski & Petrosian 2012)
 - <u>duration</u> and <u>energetics</u> are only <u>lower limits</u>!
 - determining S and L cannot be done using temporal properties alone

Epeak REDSHIFT EVOLUTION

 not entirely unexpected
 to explain detection rate at high-z ⇒ GRBs have higher L (Salvaterra+2009)

if true and Yonetoku is true

- \Rightarrow positive correlation
- selection effects not negligible

TAKE HOME MESSAGES

- 47 GBM-GRBs with redshift
- Larger scatter of Amati relation
- short GRB 080905B is very interesting
- redshift evolution
 - T₉₀: no
 - E_{peak}: maybe

TAKE HOME MESSAGES

ENJOY SE BEER AND

SE PRETZELS

- 47 GBM-GRBs with redshift
- Larger scatter of Amati relation
- short GRB 080905B is very interesting
- redshift evolution
 - T₉₀: no
 - E_{peak}: maybe

Epeak REDSHIFT EVOLUTION

 not entirely unexpected
 to explain detection rate at high-z ⇒ GRBs have higher L (Salvaterra+2009)

if true and Yonetoku is true

- \Rightarrow positive correlation
- selection effects not negligible

Epeak REDSHIFT EVOLUTION

10.00 not entirely unexpected • to explain detection rate at high- $z \Rightarrow$ GRBs have higher L 1.00 -p,rest [MeV (Salvaterra+2009) • if true and Yonetoku is true 0.10 \Rightarrow positive correlation 0.01 selection effects not 0.1 1.0 negligible Ζ

10.0