

The Fermi Era : Towards a Better Understanding of the GRB Prompt Emission

## Sylvain Guiriec

NASA Postdoctoral Program Fellow NASA Goddard Space Flight Center

on behalf of the Fermi GBM and LAT collaborations



Gamma-ray Space Telescope

Swift/Fermi GRB 2012, Munich, Germany – Monday, May 7<sup>th</sup> 2012

Conclusion

## Thanks to Fermi, we now know A LOT more about GRB prompt emission.

## But alas NOT everything !

Outline

Pre-Fermi Era (CGRO)

Fermi Era

 How these observations challenge and support the models ?

# **Prompt Emission Before Fermi**



# **Confirmation in the Fermi Era**



# And New Results !

#### **Delayed >100 MeV Emission**



#### **Multiple Spectral Components**



## **Cutoff in the Additional PL**



#### **Multi-Wavelength Afterglow**



. Bregeon talk & (Abdo et al. in preparation)

Sylvain Guiriec – Swift/Fermi GRB 2012, Munich, Germany, 20

## General Catalogues BATSE



#### GBM



- GBM results are compatible with BATSE ones.
- GBM can measure lower and higher E<sub>peak</sub> and better constrain β.
- A large fraction of α values are NOT compatible with synchrotron models.

# Time Resolved Spectrocopy BATSE Fermi



- With GBM, time resolved spectroscopy down to 2 ms time scale.
- Various behavior : hard-soft, soft-hard-soft and tracking evolution for E<sub>peak</sub>.

ylvain Guiriec – Swift/Fermi GRB 2012, Munich, Germany, 201

## High Energy Emission Temporal Properties Delayed >100 MeV Emission

## Long GRB 080916C

#### Short GRB 090510 (Ackerman et al. 2010, ApJ 716, 1178A)

(Abdo et al. 2009, Science, 323, 1688A)



- First LAT peak coincides with the second GBM pulse.
- Delay in HE onset : ~4-5 s

- The first few GBM peaks are missing but later peaks coincide.
- Delay in HE onset : ~0.1-0.2 s

ylvain Guiriec – Swift/Fermi GRB 2012, Munich, Germany, 201

## High Energy Emission Temporal Properties Long lived HE Emission

## EGRET

LAT



For search of extended GBM emission see G. Fitzpatrick's poster P-II-3

## High Energy Emission Temporal Properties Long lived HE Emission & Multi-Wavelength Observations

**Short GRB 090510** 





Forward shock model can reproduce the spectrum from the optical up to GeV energies ! (non thermal synchrotron emission from the decelerating blast wave)

ylvain Guiriec – Swift/Fermi GRB 2012, Munich, Germany, 2012

```
10/20
```

Bregeon's talk & (Abdo et al

.

preparation

# Single Band Function from keV to GeV

## **CGRO**

## Fermi



- Consistent with a single Band function from 8 keV to 10 GeV.
- Global soft-hard-soft evolution.

## Additional Power Law to the Band Function CGRO Fermi



- Additional PL can be identified in GBM data alone. Guiriec et al. 2010, ApJ 725, 225G)
- PL overpowers the Band spectrum at both low and high energy (See D.Tierney's poster P-II-2 or low energy deviation).
- Additional PL does not always extend to high energies.

# **Thermal Emission**

### **Dominant BB Component**

## **Subdominant BB Component**

#### **GRB 090902B**



(Zhang et al., 2011, ApJ, 730, 1412)

Photospheric emission modelized with a "multicolor black body".





See F. Ryde's talk and S. McGleen's talk

- E<sub>peak</sub> and kT evolve independently.
- kT evolution : constant or slow cooling, or clear cooling.
- With BB, Band more compatible with synchrotron models.

# **Direct Fit of Synchrotron Models**

#### GRB 090820A



• Fit of the analytical synchrotron model only possible in combination with BB.

# **Spectral Shapes**



## **Multiple Spectral Components**



## Multiple Spectral Components GRB 090926A GRB 080916C



• Fine time-resolved spectroscopy possible with multiple components.

 Additional PL associated with light curve structures extended from the very low to the very high energies.
17/20

## **Summary of Fermi Results**

- GBM results compatible of BATSE ones.
- Time resolved spectroscopy possible down to the ms time scale for bright events.
- Delayed >100 MeV emission onset.
- Long lasting GeV emission (external forward shock ?).
- Additional PL to the Band function with cutoffs.
- Detection of possible dominant and sub-dominant thermal components.
- Possible detection of multiple spectral components (Band+BB+PL) and association of these component with structure in light curves.

# How these Observations Challenge and Support the Models ? See D. Lazzati's talk later today

- Leptonic models (inverse-compton or SSC)
  - Hard to produce a delayed onset longer than the spike widths.
  - Hard to produce a low energy (<50 keV) power-law excess.</li>
- Hadronic models (pair cascades, proton synchrotron)
  - Late onset : time to accelerate protons & develop cascades.
  - Hard to produce correlated variability at low and high energies (e.g. spike of GRB090926A and GRB080916C).
  - Proton synchrotron radiation requires large magnetic field.
  - Synchrotron emission from secondary et pairs produced via photo-hadron interactions can naturally explain the power law at low energy.
- Early afterglow (e+e- synchrotron from external shock)
  - Can account for the delayed onset of the PL.
  - Short variability time scales in LAT data argues against external shock.
- Photospheric emission
  - Subdominant black body requires an outflow highly magnetized close to the source.
  - The lack of variability at short time scale for the temperature challenges the internal shock model.
    R. Hasco et's poster P-II-20

Conclusion

## Thanks to Fermi, we now know A LOT more about GRB prompt emission.

## But alas NOT everything !

# BAGKUP

ylvain Guiriec – Swift/Fermi GRB 2012, Munich, Germany, 2012

# GRB080916C : Band vs Band+BB+Compt

