

Observational Aspects of Gamma-ray Burst Afterglows

Thomas Krühler (DARK) Thanks to J. Greiner, J. Fynbo, D. Malesani, R. Filgas, A. Kann and many others

Gamma-Ray Bursts 2012 @ Munich 08/05/2012

Afterglows

Afterglows and redshifts

Fynbo+ 09

Afterglows and redshifts

Afterglows

The afterglows of LAT bursts

Dark Cosmology Centre

See also Greiner+ 09, Amati+ 09, Pandey+ 10, Rau+ 10, de Pasquale+ 10, Swenson+ 10, Racusin+11, Panaitescu 11, Nicuesa+ 12, Urata+ 12

Afterglows

The onset of the afterglow

- Early rise $(t^{0.5-4})$
- Peaking at $< 100 \dots 1000 \text{ s}$
- Smooth turnover to decay
- Achromatic

Molinari+ 07

e.g., Molinari+ 07, Krühler+ 08,09, Greiner+ 09, Perley+ 10, Melandri+ 10, Liang+ 10, Oates+ 10, Cucchiara+ 11 The onset of the afterglow

Forward shock is dominating the optical emission most of the time:

* Lorentz-factor $\Gamma = 100-500$

-> Direct measurement of ultrarelativistic nature

* Deceleration radius R_{dec} ~ 10¹⁷-10¹⁸ cm
-> Direct measurement of emission region
* Correlation between Γ and E_{γ,iso} (Liang+ 10)

Afterglows

Gendre+ 12 (see also Cucchiara+ 11, Zheng+ 11, Gao+ 11)

- Prompt phase (Gamma-, X-ray and optical)
- Reverse Shock & Forward shock afterglow
- RS optical only
- Jet break and post jet break light-curve evolution

Broad-band lightcurves

 $\mathbf{24}$

1e+06

Brightness [mag_{AB}]

Filgas+12

Variability

- The brightest (well-studied) afterglows continue to give important insights into GRB physics
- LAT GRBs are energetic and have luminous afterglows
- Some events are well reproducible with simple fireball scenarios
- Most of the well studies events pose challenges:
- -> Decoupling between optical and X-ray lightcurves
- -> Variability and morphology of the optical lightcurve

- Open questions:
 - -> Role of magnetic fields (Reverse shock, polarimetry ...) (-> Talk by K. Wiersema)
 -> Mechanism to decouple optical from X-ray light curve
 - -> Long-term activity of the central engine
 -> Temporal evolution of the microphysical parameters

Afterglows

- P60 (Cenko+ 09, Perley+ 09)
- UVOT (Roming+ 09, Oates+ 09)
- GROND (Greiner+ 10)
- Liverpool & FTS/N (Melandri+ 08)
- VLT (Fynbo+ 10, Zafar+ 11)
- ROTSE (Rykoff+ 09)
- Dark hosts (Perley+ 09, 12) -> Talk by D. Perley
- VLT hosts (Hjorth+ 12, Malesani+ 12, Jakobsson+12, Milvang-Jensen+ 12, TK+ 12) -> Talk by J. Hjorth
- VLT dark hosts (Rossi+ 12) -> Poster by S. Klose
- Bright Swift events (Salvaterra+ 12, Melandri+ 12, Campana + 12, Nava+ 12) <- Talk by L. Nava

1. The nature of dark GRBs

1. The nature of dark GRBs

Jakobsson+04, Fynbo+ 09

1. The nature of dark GRBs

1. The nature of dark GRBs

Dust Abundance:

* Previously: Little dust extinction in previous studies (optically selected)

* Due to GROND NIR capabilities:

- Increased detection rate
- Higher dust columns

* Up to $A_v \sim 4$

* Never directly measured in previous GRB afterglows

-> Dominant cause of 'dark' GRBs

-> Talk by D. Watson

(TK+ 12, see also Fynbo+09, Campana+12)

2. The fraction of high-z GRBs

- -5.5 + / -2.8 %
 - z > 5 (Greiner+ 10)
- < 14 %, < 7 % z > 5, z > 7 (Perley+ 09)
- 3-5 %, 0.2-0.7 %z > 5, z > 8 (Salvaterra+ 12)
- < 14 %, < 5 %z > 6, z > 7 (Jakobsson+ 12)
- cp. SDSS/CFHT QSO: (~0.05 %) z > 5.7 (Willott+ 10)
 - -> Talk by N. Tanvir

3. The hosts of long GRBs

3. The hosts of long GRBs

Dark GRBs have
redder,
more luminous,
higher mass and
higher metallicity hosts
than the hosts of
optically bright GRBs

-> Talk by D. Perley

TK+11

4. The fraction of SFR traced by GRBs

- Connect SFR w. GRB rate:
- None to strong evolution: $-> a \sim 0 \dots 2$
- (Virgili+11, Wang & Dai 11, Elliott+11, Jakobsson+12, Robertson & Ellis 12, Salvaterra+12)

-> Talk by J. Elliott

- Well defined, statistically significant, and highly complete samples of GRBs are now available
- Give new insights into the nature of genuine dark GRBs (80% dusty, 20% high-z (z > 5))
- Provide good constraints on the high-z rate ($\sim 5^{\circ}/_{\circ}$ z > 5, factor 100 higher than QSOs
- Indicate substantial selection biases in the distribution of DLA metallicities, dust and host properties
- Connect SFR vs. GRB rate including selection biases

Afterglows

X-rays (XRT)

Optical (HST)

Radio (VLA)

Broad-band lightcurves

Cucchiara+11

- Double peaked optical/NIR afterglow w/o X-ray counterpart
- FS onset & energy injection
- Decouple X-ray and optical

Jumps

Broad-band behavior:

- No/weak
 signature in the
 X-rays
- Late afterglow
 seem to track
 each connect
 well

