The E_p – E_{iso} relation: intrinsic GRB property or/and selection effects ?

R. Mochkovitch with R. Hascoët, F. Daigne (IAP) J.L. Atteia, V. Heussaff (LATT) S. Boci, M. Hafizi

(Tirana) Observational evidences: starting with Amati et al (2002)

Now includes bursts from the pre-Swift, Swift and Fermi eras

slope = 0.55 σ = 0.23 dex

Similar Yonetoku ($E_p - L_{iso}$) relation (Yonetoku et al, 2004)

- includes short bursts
- time resolved $E_p(t) L_{iso}(t)$ correlation within a given burst

If Amati/Yonetoku relations represent intrinsic GRB properties:

- clues for the prompt emission mechanism
- potential tools for cosmology

Critics: relations largely shaped by selection effects ?

If intrinsic:

- **slope, normalization** of the relations should not depend on detector some indications that it is not the case (Butler et al, 2010)
- constraints imposed in observational diagrams (Fluence, Peak flux E_{p.obs})

Nakar & Piran, 2005 Band & Preece, 2005 → 88% outliers

but Nava et al (2011) \rightarrow 9% outliers

Where to expect selection effects in the $E_p - E_{iso}$ diagram ?

Internal shocks and the $E_p - E_{iso}$ relation

Monte-Carlo study with a 2 shell toy model (Barraud et al, 2003)

Observational Constraints

 $\log N - \log P$ diagram

Observed distributions of $E_{\rm p}$, t_{90} , z

Kaneko et al, 2006

1000

104

Results: $E_p - E_{iso}$ relation

Results: E_{p,obs} – Fluence diagram

Results: time resolved $E_p(t) - L_{iso}(t)$ correlation

Multi-shell internal shock model

Conclusions

• The $E_p - E_{iso}$ relation in the context of the internal shock model

 $\rightarrow E_p = E_{iso}^{1/2} \times Q(\varepsilon_e, \varepsilon_B, \tau, \kappa, \overline{\Gamma})$

- If the interval of variation of the model parameters is not too large $\rightarrow E_p - E_{iso}$ and $E_{p,obs}$ - Fluence relations in agreement with observations from a combination of physical origin and selection effects
- The normalization of the $E_p E_{iso}$ relation changes with detector sensitivity
- Time resolved $E_p(t) L_{iso}(t)$ correlation in individual bursts: global agreement between model and observations but larger variations of E_p for a given L_{iso}
- Extension of the present work
 - refining the threshold condition
 - Yonetoku relation
 - correlation between flow parameters: $\bar{\mathsf{E}}_{\mathsf{K}}$, $\overline{\Gamma},$...