Collapsar and Magnetar Models Long-Duration Gamma-Ray Bursts

Y TP VUKAVA INSTITUTE FOR VUKAVA VUKAVA INSTITUTE FOR VUKAVA VU

Gamma-Ray Bursts 2012 Conference

7-11 May 2012, Munich, Germany

§ Introduction

History of the Numerical Study on the Central Engine of Long-GRBs.

 First report on the association of a GRB with a hypernova was done in 1998.

Outline of Explosion Mechanism is still under debate. BH (Collapsar) or NS (Magnetar)? Neutrino or B-Field?

- Rotating Black Hole with Neutrino Heating?
- Rotating Black Hole with Strong B-Fields ?
- Rotating Magnetars?

Black Hole with Neutrino Heating

MacFadyen and Woosley 99 Newtonian Without Neutrino physics

S.N.+07 Newtonian With some Neutrino physics.

Black Hole with Strong B-Fields

Barkov and Komissarov 08 2D-GRMHD, a=0.9 With Some Microphysics Γ< a few. Density Contour.

S.N. 09 2D-GRMHD, a=0.5 Without Microphysics. Γ< a few. Plasma beta.

3D-GRMHD Simulation

S.N. 2012, in prep.

不

Black Hole Formation

Full 2D-GRHD with Microphysics

Sekiguchi and Shibata 11

Full 3D-GRHD without Microphysics

Ott+11

Magnetar Scenario

Komissarov and Barkov 07 2D-GRMHD with some Microphysics v^r/c . ~0.5.

Bucciantini+09 2D-SRMHD without Microphysics Lorentz factor = 5-10

Magnetar Formation

Takiwaki et al. 09 SRMHD, Neutrino Physics, Realistic EOS. Upto 100ms. Γ< a few. See also Takiwaki,Kotake,S.N.,Sato 04.

Burrows et al. 07 Newtonian-MHD, Neutrino Physics&EOS. Upto 0.5-0.6sec.

§ Study on a Rotating Black Hole with Strong B-Fields by a General Relativistic Magneto-Hydrodynamic (GRMHD) code

2D/3D GRMHD Codes with MPI. 2D/3D SRMHD with AMR & MPI. S.N. ApJ (2009). S.N. PASJ (2011). S.N. 2012, in prep.

YukAwa institute's MAgneTO-hydro (YAMATO) code YAMATO (大和) =Old Name of Japan

GRMHD Code is necessary to see Blandford-Znajek Process.

Blandford-Znajek Process can be seen Numerically Now

C:Amplitude of B-Field. a: Kerr-Parameter.

This solution can be used to check the validity of numerical codes. Numerical Simulation is necessary for large a and different B-fields.

Initial Condition for GRB Simulations

- Fastly Rotating Massive Stellar Model (12TJ) by Woosley and Heger 2006.
- Fe core (1.82Msolar) is extracted and a rotating black hole is put instead.
- MBH=2Msolar, a=0.5 (Fixed Kerr Metric). • $\Gamma=4/3$
- $A_{\phi} \propto \max(\rho/\rho_{\max} 0.2, 0) \sin^4 \theta$
- Minimum value of $p_{
 m gas}/p_{
 m mag}=10^2$

Simulation of a Collapsar

C=G=M=1 Unit

Density contour in logarithmic scale (g/cc) Dynamics is followed up to 1.77sec from the collapse.

Dependence of Dynamics on Rotating Black Hole

Blandford-Znajek Flux and Jet Energy S.N. 2011

BZ (outgoing poynting)-Flux In unit of 10^50 erg/s/Sr at T=1.5760sec. Kerr Parameter, a=0.95. Jet Energy at t=1.5750 sec for a=0, 0.5, 0.9, 0.95 (Solid Curves).

3D-GRMHD Simulation of GRBs

S.N. 2012, in prep.

256×256×32 a=0.9

S.N. 2012, in prep.

a=0.9 T~0.85sec

Same Simulations. Left: 3D Image. Density+B-fields.

Bottom: 2D Slice Density+Poloidal B-Fields

0

a=0.9 T~0.9sec.

Same Simulations. Left: 3D Image. Density+B-fields.

Bottom: 2D Slice Density+Poloidal B-Fields ← → ~150km

0

-20

-4∩

20

40

For Fine Resolution Simulations: SRMHD Code with Adaptive Mesh Refinement (AMR)

Paramesh:

http://www.physics.drexel.edu/~olson/paramesh-doc/Users_manual/amr.html

K(京:10Peta-Flops) Computer is Coming Soon (2012-).

548,352Cores Memory 8GB per 1Core 100GB/s.

Summary on the Central Engine of LGRBs

- Outline of Explosion Mechanism of LGRBs is still under debate. Lots of things to do.
- Rotation Energy of a Black Hole can be extracted with a help of Magnetic Fields (Blandford-Znajek Effect).
- Faster is better: Rapidly rotating Black Hole can drive an energetic GRB jet.
- GRB simulations by 3D GRMHD code are being done. AMR will be attached. 10-Peta Flops Computer will be open very soon.

§Slide Show of Our Studies

Gamma-Ray Bursts as a Treasure Box of Physics & Mysteries

Nucleosynthesis	Photospheric	UHECRs?	GRB/SN
Central Engine	Emission?	Neutrinos?	Remnants?
re from P. Meszaros	GRB Cosmology?		

Figu

Simulations for the Photospheric Model

Mizuta, S.N., Aoi 2010 (Also, F.Ryde's talk and D.Lazzati's talk) Mizuta, S.N., et al. 2012, in prep.

Spectrum, E_peak, and L_peak

- Superposition of BB spectrum makes the spectrum at lowenergy side a little bit softer, although it is not enough to explain alpha.
- Yonetoku (and Amati) Relation is almost reproduced except for some systematic difference.

Monte-Carlo Simulations for the Band-Function

First Results of Telescope Array are Open Now

Black: LSS model (smearing angle = 6°)

Re-analysis of 215 GRBs' Neutrinos

He, Liu, Wang, S.N.+ 12

Expected Neutrino Flux from 215 GRBs.

See also Li 12, Hummer +12 Murase and S.N. 06a, 06b

 $\alpha = 1, \beta = 2$, fluence $F_{\gamma}^{ob} = 10^{-5} \text{erg cm}^{-2}$ (in 10keV to 1MeV), $z = 2.15, \epsilon_{\gamma,b}^{ob} = 200 \text{keV}$

 $L_{\gamma} = 10^{52} \text{erg s}^{-1}$, bulk Lorentz factor $\Gamma = 10^{2.5}$, the observed variability timescale $t_{v}^{ob} = 0.01$ s and the baryon ratio $\eta_{p} = 10$.

Study on Supernova Remnant RXJ1713.7-3946 with CR-Hydro-NEI Code

Lee, Ellison, S.N. 2012 Ellison+ 2010 and References there in.

RXJ1713 in TeV-Gamma (Color, HESS) And X-rays (Contour, ASCA) Age is about 1600yrs.

Supernovae and Gamma-Ray Bursts in Kyoto, 2013

Oct.-Nov. in 2013.

- 2weeks for Conferences (SN and GRB)
- **3weeks for Workshops (Seminars & Discussions).**

Photo from GRB2010, Kyoto

In April.

You can Stay More in Kyoto.

Program for Ph.D Students or Postdocs
 Period: 1-3 Months.

Flight fee & accommodation fee are covered, at least.

- Some Programs for Visiting Staffs.
- Some Postdoc Positions will be open (YITP, Kyoto Univ. and JSPS).

Kyoto in Spring

Kyoto in Summer

Kyoto in Autumn

Kyoto in Winter

Summary

- Outline of Explosion Mechanism of LGRBs is still under debate.
- Rotation Energy of a Black Hole can be extracted with a help of Magnetic Fields (Blandford-Znajek Effect).
- Faster is better: Rapidly rotating Black Hole can drive an energetic GRB jet.
- GRB simulations by 3D GRMHD code are being done. AMR will be attached. 10-Peta Flops Computer will be open very soon.
- Explosive Nucleosynthesis is being studied by Flash code.
- Photosperic Models are studied by numerical simulations and Monte-Carlo calculations.
- UHECRs, VHE-Neutrinos, SNRs are being studied.
- 5 Week Conferences and Workshoos on SNe and GRBs will be held in Kyoto, 2013, Oct.-Nov.
- Programs for Visitors and Postdocs.

Stagnation Region

S.N. (2011)

 Kerr Parameter, a=0.95 T=160000 (=1.5760 sec).
 Stagnation Region can be seen
 At R=15 (=45km) in the Jet.

Density Contours in logarithmic scale (g/cc) with Velocity Fields

Time evolution of the Photo-sphere and Thermal Emission

Left: Evolution of the temperature at the photo-sphere viewed from the jet axis.

Right: Beaming factor at the photo-sphere.

Superposition of thermal emissions from each area of the photosphere is observed.

Re-analysis of 215 GRBs' Neutrinos He, Liu, Wang, S.N.+ 12

Expected Neutrino Flux from a single GRB

Expected Neutrino Flux from 215 GRBs.

 $\alpha = 1, \beta = 2$, fluence $F_{\gamma}^{ob} = 10^{-5} \text{erg cm}^{-2}$ (in 10keV to 1MeV), $z = 2.15, \epsilon_{\gamma,b}^{ob} = 200 \text{keV}$

 $L_{\gamma} = 10^{52} \text{erg s}^{-1}$, bulk Lorentz factor $\Gamma = 10^{2.5}$, the observed variability timescale $t_{v}^{ob} = 0.01$ s and the baryon ratio $\eta_{p} = 10$.

IC40/59 can draw a constraint on GRB-Neutrino scenarios with a help of some Empirical Relations

215 GRBs' Neutrinos

He, Liu, Wang, S.N.+ 12.

Gray: All GRBs are assumed to be same (IceCube Collaboration).

Red: Same with ICC, but for Numerical Model.

Green: Numerical Model with Lv relation (2011)

$$\Gamma_L = 118 E_{\rm iso, 52}^{0.26}.$$

$$L_{\gamma G, 52} = 7.54 \left[\epsilon_{\gamma \rm b, MeV}^{\rm ob}(1+z) \right]^{1.75}$$

Blue: Numerical Model with Ghirlanda relation (2011)

$$\Gamma_G = 29.8 E_{\rm iso, 52}^{0.51}.$$

$$L_{\gamma G, 52} = 7.54 \left[\epsilon_{\gamma \rm b, MeV}^{\rm ob}(1+z) \right]^{1.75}$$

Gamma-Rays look Leptonic Origin for RXJ1713. 7-3946

