Marco Nardini

In collaboration with The GROND group

Unveiling long lasting central engine activity with Optical-NIR afterglows

> Gamma-Ray Burst 2012 Conference München 2012 May 10th

GRB AFTERGLOWS State of the art in the SWIFT era

WHAT DO WE SEE?

• The bright optical-NIR afterglow is detected in all 7 GROND filters up to a few days after the trigger

WHAT DO WE SEE?

- The bright optical-NIR afterglow is detected in all 7 GROND filters up to a few days after the trigger
- Extremely prominent optical-NIR bump

WHAT DO WE SEE?

- The bright optical-NIR afterglow is detected in all 7 GROND filters up to a few days after the trigger
- Extremely prominent optical-NIR bump

•Temporal breaks are achromatic in all optical and NIR bands

WHAT DO WE SEE?

- The bright optical-NIR afterglow is detected in all 7 GROND filters up to a few days after the trigger
- Extremely prominent optical-NIR bump

•Temporal breaks are achromatic in all optical and NIR bands

•Achromatic wiggles during the optical-NIR bump

IS THE BUMP OF GRB 081029 UNIQUE?

IS THE BUMP OF GRB 081029 UNIQUE?

LIGHT-CURVE FITTING

LIGHT-CURVE FITTING

Some events show extremely fast second component rise

LIGHT-CURVE FITTING

Some events show extremely fast second component rise

GRB 081029 OPTICAL-NIR COLOUR EVOLUTION

OPTICAL-NIR COLOUR EVOLUTION

A common behaviour?

OPTICAL-NIR COLOUR EVOLUTION

A common behaviour?

Any among the most commonly invoked scenarios?

Any among the most commonly invoked scenarios?

Any among the most commonly invoked scenarios?

INHOMOGENEOUS EXTERNAL MEDIUM

(Dai & Wu 2003, Lazzati et al. 2002...)

PRO

- Physical justification
- Bump not visible in the X-rays

CON

Sharpness of the bump (Nakar & Granot 2007, van Erten et al. 2009)

Any among the most commonly invoked scenarios?

MULTIPLE JET MODEL

PRO

• Physical justification

INHOMOGEN

(Dai & Wu 2003, Lazzati et a

EXTERNAL MI

• Bump not visible in t PRO

CON

• Sharpness of the bur & Granot 2007, van Ei 2009)

Racusin 2008,De Pasquale 2009,Filgas 2010...

- Colour evolution
- Achromatic post break evolution

CON

- Steepness of the second jet rise with α < -10
- Closure relations

Any among the most commonly invoked scenarios?

INHOMOGEN EXTERNAL MI

(Dai & Wu 2003, Lazzati et a

PRO

- Physical justification **PRO**
- Bump not visible in t

CON

• Sharpness of the bur & Granot 2007, van El evolution 2009)

LATE PROMPT

Ghisellini, Nardini et al.2009, Nardini et al 2010

- - Colour evolution
 - Achromatic post break

CON

• Steepness of the second component rise with $\alpha < -10$

Any among the most commonly invoked scenarios?

INHOMOGENEOUS EXTERNAL MEDIUM

(Dai & Wu 2003, Lazzati et al. 200**2...)**

PRO

- Physical justification
- Bump not visible in the X-rays

CON

• Sharpness of the bump (Nakar & Granot 2007, van Erten et al. 2009)

MULTIPLE JET MODEL

Racusin 2008,De Pasquale 2009,Filgas 2010... PRO

- Colour evolution
- Achromatic post break evolution

CON

- \bullet Steepness of the second jet rise with α < -10
- Closure relations

LATE PROMPT

Ghisellini, Nardini et al.2009, Nardini et al 2010 PRO

- Colour evolution
- Achromatic post break evolution

CON

• Steepness of the second component rise with α < -10

NO, at least under standard formulation

What do we need?

What do we need?

Rising late prompt component

Two shells collision

Long lasting activity/reactivation of the central engine

ANY EVIDENCE FROM OTHER BANDS?

Delayed pre and post cursors

Pre/Post-cursors and rebrightenings

Pre/Post-cursors and rebrightenings

CONCLUSIONS

- Optical-NIR late bumps are not uncommon
- Optical-NIR late bumps are chromatic
- Inconsistent with most commonly invoked scenarios
- Late reactivation of the central engine is a possible solution
- Still missing the observational "smoking gun"

OPTICAL-NIR REBRIGHTENINGS IN THE MULTI-COLOUR IMAGING ERA