FERMI/SWIFT GRB CONFERENCE 2012

Prompt spectral properties of a complete sample of Swift Gamma-Ray Bursts

R. Salvaterra (IASF-Mí) G. Ghírlanda (OAB) G. Ghísellíní (OAB) G. Taglíaferrí (OAB) S. Campana (OAB)

- S. Covino (OAB)
- P. D'AVANZO (OAB)
- D. Fugazza (OAB)

A. Melandrí (OAB) B. Sbarufattí (OAB) S.D. Verganí (OAB)

Redshift completness

Complete Sample

Published / Submitted papers

Salvaterra et al. <u>Luminosity function and evolution</u>

Nava et al. <u>Spectral properties and correlations</u>

Campana et al. <u>X-ray absorbing column density</u>

> Melandri et al. Dark bursts population

D'Avanzo et al. (submitted) <u>Correlations of prompt and X–ray afterglow emission</u>

Salvaterra et al. 2012 (52/58)

See poster by Tagliaferri et al. P-III-7

Redshift distribution & Luminosity evolution

redshift distribution: mean (median) redshift= 1.84 (1.64)

luminosity evolution: $L_{\text{cut}} \propto (1+z)^{\delta_l}$ with $\delta_l = 2.3 \pm 0.6$

density evolution: $\eta \propto (1+z)^{\delta_n}$ with $\delta_n = 1.7 \pm 0.5$ or $Z_{\text{th}} < 0.3Z_{\text{sun}}$

Salvaterra et al. 2012, ApJ, 749, 68

Spectral properties

Total sample: all bursts with known redshift and spectral properties (136 GRBs)

Amati & Yonetoku correlations

Nava et al. 2012, MNRAS 421, 1256

- ✓ Correlations are confirmed
- ✓ 1 outlier is found (~2% see Nava et al. 2008)
- Total and Complete sample: normalization, slope and dispersion are consistent

Amati & Yonetoku correlations

- ✓ consistency check on GRBs without redshift and/or without measured E_{peak}
 ✓ all bursts are consistent with both the correlations

Redshift evolution

Another important issue: possible evolution of correlations with z no evolution of the slopes is found

might the Epeak – Liso correlation be produced by the threshold of a flux-limited sample of bursts?

Monte Carlo simulations

- pick up a z (from GRB formation rate, Li 2008)
- we assign a peak luminosity adopting a luminosity function
- we assign to each simulated burst E_{peak} (independent on L_{iso})
- we extract a sub-sample of bursts with P > 2.6 ph cm⁻²s⁻¹
- we then study the correlation Epeak-Liso: a correlation has been introduced by the introduction of a flux limit?

We compute:

- 1- the percentage P_p of simulations giving a significant correlation (i.e. with chance prob. >10⁻³)
- 2- the percentage P_c of simulations giving a significant correlation that matches the observed slope, normalization and scatter

Ghirlanda et al. 2012, MNRAS in press, arXiv:1203.0003

Results from simulations

92.7% (91.7%) of simulations do not produce a significant correlation. If we also require that the obtained correlation is consistent (in terms of its slope, normalization and scatter) with that observed in the Swift complete sample, the percentage drops to P = 0.7%

Yonetoku correlation is not due to the flux limit of the sample

Ghirlanda et al. 2012, MNRAS in press, arXiv:1203.0003

correlation or boundary?

assuming the correlation or a boundary give reasonable results

Ghirlanda et al. 2012, MNRAS in press, arXiv:1203.0003

Conclusions

GRB luminosity function

- strong evolution (luminosity and/or density) is required
- observed z-distribution does not allow to distinguish among evolutionary models

Prompt emission properties and correlations

- Amati & Yonetoku correlations are confirmed with 1 outlier
- Slope, normalization and dispersion are consistent with those found from the Total (incomplete) sample
- o no redshift evolution of the slope is found
- Yonetoku correlation is not due to the flux limit of the sample

no evolution model

no evolution model provides a poor fit of the data (KS \sim 5 \times 10⁻⁵)

Salvaterra et al. 2012, ApJ 749, 68

GRB intrinsic z-distribution

GRB intrinsic distribution peaks at higher redshift with respect to stars, requiring:

- higher z for the first break
$$z_1=1 \rightarrow z_1=2.5$$

or

- harder second power-law $a_2=0.055 \longrightarrow a_2=2.4$

Salvaterra et al. 2012, ApJ 749, 68

comparison with a deeper sample

- Mean predicted redshift <z>=2.05±0.15
- ✓ 3-5% at z>5 consistent with observations (Greiner et al. 2011; Perley et al. 2009)
- Iuminosity and density evolution predict similar observed redshift distributions

grb luminosity function

jointly fit the BATSE logN-logP and the z-distribution of the complete sample

Salvaterra et al. 2012, ApJ 749, 68

Spectral properties

Correlation analysis

Correlation	Sample	#GRBs	ρ	P _{chance}	Slope	Norm.	$\sigma_{ m sc}$
$E_{\rm peak} - E_{\rm iso}$	Total Complete Complementary	136 46 90	0.77 0.76 0.78	$ \begin{array}{r} 4 \times 10^{-28} \\ 7 \times 10^{-10} \\ 3 \times 10^{-19} \end{array} $	0.55±0.02 0.61±0.04 0.53±0.02	-26.74±1.13 -29.60±2.23 -25.55±1.35	0.23 0.25 0.25
E _{peak} – L _{iso}	Total Complete Complementary	135 46 89	0.74 0.65 0.75	8×10^{-25} 1×10^{-6} 3×10^{-17}	0.49±0.03 0.53±0.06 0.48±0.04	-22.98±1.81 -25.33±3.26 -22.44±2.12	0.30 0.29 0.30

Correlation analysis simulated sample

$\Phi(L)$	a	$L_{\rm cut} {\rm ~erg~s^{-1}}$	b	δ	$\mathcal{P}_{ ho}$	\mathcal{P}	%Out.↑	%Out.↓
Density Luminosity Assume $E_{\text{peak}} - L_{\text{iso}}$ $E_{\text{peak}} - L_{\text{iso}}$ boundary	-1.37 -1.4 -1.4 -1.4	3.8×10^{52} 10^{51} 10^{51} 10^{51}	-2.37 -2.13 -2.13 -2.13	1.22 2.67 2.67 2.67	7.3% 8.3% 100% 87%	0.7% 0.6% 66% 12%	0.7% 1.0% 0.07% 1.4%	2.0% 2.2% 0.2% 0.1%
K12 (BATSE) K12 (Swift)	-1.22 -1.22	10^{53} 10^{53}	-3.89 -3.89		0.5% 0.7%	0.0% 0.0%	2.6% 0.4%	0.7% 1.3%

Comoving frame properties: an explanation for correlations?

Beaming effects rest frame properties are affected by the relativistic motion of the emitting matter

During prompt \rightarrow bulk Lorentz factor ~ Γ_0

Methods to estimate $\Gamma_{\rm 0}$

- 1. Lower limit from $\gamma\gamma$ opacity
- 2. Peak time of the afterglow lightcurves

Nava et al., 2006

- slope = 0.70 ± 0.04
- scatter $(1\sigma) = 0.11 \text{ dex}$
- $\chi^2_{red} \sim 1.5$ (27 dof)

- slope = 1.04 ± 0.05
- scatter $(1\sigma) = 0.09$ dex
- $\chi^2_{red} \sim 1.4$ (27 dof)

Instrumental Selection Effects

Amati relation in the observational plane

HETE: Sakamoto et al. 2005 BATSE: Kaneko et al. 2006 Swift/BAT: Butler et al. 2007 (freq) Konus/Wind: Golenetskii et al. (GCNs) Extend the Bright BATSE GRB sample (Kaneko et al. 2006) to lower fluences

Build a complete spectral sample of BATSE bursts down to $\sim 10^{-6} \text{ erg/cm}^2$

Nava et al., 2008, MNRAS

Yonetoku relation in the observational plane

HETE: Sakamoto et al. 2005 BATSE: Kaneko et al. 2006 Swift/BAT: Butler et al. 2007 (freq) Konus/Wind: Golenetskii et al. (GCNs)

What about short bursts?

Short bursts populate the same region of long bursts in the E_{peak,obs}-Peak Flux plane. They can be consistent with the E_{peak}-L_{iso} correlation Short bursts have similar Epeak but lower fluences in respect to Long bursts. They cannot be consistent with the E_{peak}-E_{iso} correlation

Fermi/GBM GRBs

Selection effects ?

Ghirlanda, Nava & Ghisellini 2009