Time-dilation in Type la Supernova Spectra at High Redshift

Stéphane Blondin

European Southern Observatory Harvard-Smithsonian CfA

(based on Blondin et al. 2008, ApJ, 682, 724)

Time-dilation in a FLRW universe

In a homogeneous, isotropic, and expanding universe:

First suggestion to use SN Ia to test this by Wilson (1939)

SN la light curves confirm dilation

High-z light curves same as low-z ones stretched by 1+z

1974: Rust (PhD thesis) *z* < 0.05 only

1996: Leibundgut et al. *SN1995K; z = 0.48*

2001: Goldhaber et al. 42 SNe Ia; $0.17 \le z \le 0.83$

Goldhaber et al. 2001

Pb.#1: Intrinsic width

$$w = s \times (1 + z)$$

Intrinsic width ("stretch") Observed width

To test time-dilation hypothesis:

1. know $s_{z=0}$ distribution and s(z)2. probe $1+z \gg s$

Pb.#2: Selection effect

Brighter SN Ia have *broader* light curves

At high redshift, preferentially select brighter (i.e. broader) SN Ia

adapted from Stritzinger (2005)

SN Ia Spectra: Rapid Evolution

SN Ia Spectra: Rapid Evolution

SN la Spectra: Homogeneity

Most SN Ia have similar spectra at a given age, *independent of intrinsic light-curve width*, i.e. possible to determine *rest-frame* age of a single spectrum to 1-3 days

Large spectral database at z~0

Cross-correlation with a large database of SN Ia spectra at $z \approx 0$ 75% of spectra from CfA SN Program

Spectrum vs. light-curve ages

High-redshift SN la spectra

Aging rates

 $>3\sigma$ detection of time dilation for one object

Confirmation of 1/(1+z) dilation

Zwicky's "tired light" hypothesis excluded beyond doubt ($\Delta \chi^2 = 120$)

Confirmation of 1/(1+z) dilation

Apparent bias to > 1.0 *not* statistically significant (error ~ 1 bin size)

Testing alternative "models"

Conclusion

Using spectra of high-redshift Type Ia supernovae, we have *directly* confirmed the 1/(1+z) time-dilation hypothesis *over a large redshift range* ($0 \le z \le 0.62$)

Fundamental test of FLRW cosmology!

Conclusion

Using spectra of high-redshift Type Ia supernovae, we have *directly* confirmed the 1/(1+z) time-dilation hypothesis over a large redshift range ($0 \le z \le 0.62$)

Fundamental test of FLRW cosmology!

Null hypothesis of no time dilation rejected beyond doubt $(\Delta \chi^2 = 120)$

Conclusion

Using spectra of high-redshift Type Ia supernovae, we have *directly* confirmed the 1/(1+z) time-dilation hypothesis over a large redshift range ($0 \le z \le 0.62$)

Fundamental test of FLRW cosmology!

Null hypothesis of no time dilation rejected beyond doubt $(\Delta \chi^2 = 120)$

Alternative dependence of aging rate on redshift reduces to the expected factor:

 $1/(1+z)^{b}$ with $b = 0.95 \pm 0.10$