Studying Dark Energy with X-ray Cluster Surveys

Hans Böhringer

Max-Planck-Institute für extraterrestrische Physik, Garching

Rene Fassbender, Peter Schuecker, Gabriel Pratt, Robert Suhada (MPE) Luigi Guzzo (Merate), Chris Collins (Liverpool), Piero Rosati (ESO)

Overview

- Cosmology with Galaxy Clusters
- The Cluster Power Spectrum from the ROSAT Survey
- Outlook : the eROSITA Mission

The Role of Galaxy Clusters in the Hierarchy of Large-Scale Structure

Statistics of the peaks (Cluster Population) determined from the statistical properties of the fluctuation field, P(k)

today: (smoothed fluctuation field)

mass of galaxy clusters ~ $10^{14} - 10^{15} M_{sun}$

Cosmological Tests with Galaxy Clusters

- Cluster Abundance (Mass function)
- Large-Scale Clustering Statistics
- Cluster Evolution
- "Standard Candles" = e.g. Baryon Fraction; SZE-X-rays
- Cluster Structure (DM halo shape)

The Role of X-ray Galaxy Clusters in <u>Cosmological</u> Studies

from POSS and ROSAT-All Sky Survey

- 82 87% = Dark Matter
- 11 13% = hot gas

Coma Galaxy Cluster

2 - 5% = galaxies (for $H_0 = 70$)

Galaxy Clusters, the largest well defined objects in the Universe. The form a well understood integral part of the cosmic large-scale structure.

Therefore they are ideal probes to study cosmic evolution and to test cosmological models.

Three fundamental astronomical building blocks of the Universe:

Stars

Galaxies

Clusters of Galaxies

Combined REFLEX & NORAS Survey

Status of NORAS II + REFLEX II

REFLEX I & II = 447 + 457 clusters

- flux limit 1.8 10⁻¹² erg s⁻¹ cm⁻² (0.1 – 2.4 keV)

NORAS I & II >= 800 clusters

- flux limit 2.0 10⁻¹² erg s⁻¹ cm⁻² (0.1 – 2.4 keV)

Three-dimensional distribution of the *REFLE*X and *NORAS* galaxy clusters

Prediction of the Lx-function and $P_{cl}(k)$

Fitting the REFLEX X-ray Luminosity Function with Cosmological Model Predictions

Empirical L_X - Mass Relation

Hans Böhringer Dark Energy Conference, Leopoldina 11. 10. 2008

11

X-ray vs Weak Lensing Mass Calibration

LoCuSS Project (G. Smith et al.)

Zhang et al. 2007

Mass bias for X-rays :

Errors in previous modeling:

- RB02 isothermality +20-25%
- HE assumption, multiT 10-20%
- optimistics scatter 10-20%

→ rough compensation of up to 30% uncertainties !

Cosmological Constraints from Nearby Cluster X-ray Luminosity Function

Perfect prediction of the Concordance Cosmological Model for the Luminous Clusters from the REFLEX Sample

Spatial Distribution Characterized by P(K)

Karhunen-Loeve Eigenmode Decomposition of the Distribution of the REFLEX G.C.

Examples of KL modes :

Š

[Schuecker et al. 2002]

introduced by Vogeley & Szalay 1996

This analysis allows us to simultaneously assess the form of the power spectrum and the cluster abundance !

Constraints on Cosmological Models and Ω_m from the *REFLEX* Cluster Survey

Combined Constraints REFLEX & SN Ia on $\Omega_{\rm m}$ and $W_{\rm x}$

Data from REFLEX and SN observations of Riess et al. 1998 and Perlmutter et al. 1999 [Schuecker et al. 2003]

$$\Lambda \implies \rho_x(z) \quad ; \ w = \frac{P_x}{\rho_x}$$

17

Evolution of the Cluster Mass Function

Differential comoving cluster abundance (> Mass_{limit}) ster⁻¹ dz=0.1⁻¹

Hans Böhringer Dark Energy Conference, Leopoldina 11. 10. 2008

Cosmological Constraints with Baryon Oscillations measured in the cluster power spectrum

Hans Böhringer Dark Energy Conference, Leopoldina 11. 10. 2008

Constraints from 100K Cluster Survey

Time dependence of w_x $w_{x(z)} = w_0 + w_a z$

 $p(z) = w_x(z) * \rho(z)$

Results from the White Paper submitted to the NASA/DOE Dark Energy Task Force: Haiman, et al., 2005, astro-ph/0507013 Hans Böhringer Dark Energy Conference, Leopoldina 11. 10. 2008

Conclusions

Galaxy Clusters are important cosmological probes :

- We get a consistent description of the present day cluster population (abundance & clustering) within the concordance model (based on ROSAT cluster surveys)
 - \rightarrow robust predictions of σ_8 and Ω_m
- Large and Deep X-ray and SZ cluster surveys offer great potential (with order 10000 clusters \rightarrow constraints of w to few%)
 - requires tight control of systematics (mass to few % !)
 (future survey analysis will involve multiple parameters and require detailed comparison to simulations)