Cosmological hydrodynamical simulations in various dark energy scenarios

Klaus Dolag^(*)

Max-Planck-Institut für Astrophysik

V. Pettorino, L. Moscardini, C. Baccigalupi, M. Bartelmann, M. Meneghetti

Introduction

Dolag et al. 2004 Evolutionary sequence of cluster in various DE scenarios.

Introduction

Universal density profile (NFW, 1997):

$$\rho(r) = \frac{\rho_0}{(r/r_{\rm s})(1+r/r_{\rm s})^2}, c = r_{200}/r_{\rm s}$$

Inner structure remembers formation history !

 $\Omega_{matter} = 0.268$ $\Omega_{\Lambda} = 0.732$ $\Omega_{bary} = 0.044$ $H_0 = 0.704$ $\Sigma_8 = 0.776$ n = 0.947

• $L_{box} = 300 \text{ Mpc/h}, n_p = 2 \times 768^3, \epsilon_G = 7.5 \text{ kpc/h}$

 $\Rightarrow m_{DM} = 3.7 \times 10^9 M_{\odot}/h \text{ and } m_{gas} = 7.3 \times 10^8 M_{\odot}/h$

- WMAP3
- SUGRA ($\sigma_8 = 0.69, w_{\phi_0} = -0.9, w(z=0) = -0.93$)
- **RP** ($\sigma_8 = 0.75, w(z=0) = -0.93$)
- EQn_w120 ($\sigma_8 = 0.73, w_{JBD0} = 120, w_{\phi_0} = -0.9, \alpha = -0.23$)
- EQp_w120 ($\sigma_8 = 0.79, w_{JBD0} = 120, w_{\phi_0} = -0.9, \alpha = 0.64$)

See Pettorino & Baccigalupi 2008 for details on the DE models.

Simulations (cooling + star formation, DM control run)

Comparing linear growth (D^+) : Theory vs. Simulations.

Comparing linear growth (f_g) : Theory vs. Observations.

C-M relation from DM-only control run. In general c much lower because σ_8 changed (0.9 \rightarrow 0.776).

Scaling with D^+ (Dolag et al. 2004) holds also for EQ models. Also confirmed by Grossi & Springel 2008 for EDE models.

Interplay between formation history and baryon physics.

Baryon physics breaks scaling (adiabatic contraction, Gnedin 2004)! Large separation between different DE models !

Baryon fraction in clusters: Simulations vs. Observations.

Star fraction in clusters: Simulations vs. Observations. Fine for all except the RP model.

X-ray temperature function: Simulations vs. Observations. Almost fine for all, very low for the SUGRA model.

 $L_{xray} - T$ relation: Simulations vs. Observations. Almost fine for all (at high T), except maybe the **RP** model.

Conclusions

- Galaxy clusters are powerful tools to investigate DE models.
- Universal C-M relation in pure DM scenarios holds also for more *exotic* DE models.
- Baryonic physics can strongly interact/respond to DE background.
- Universal C-M relation can break down in presence of cooling.
- C-M relation is a powerful tool to challenge DE models (even Λ !).
 - X-Ray observations of clusters allow various further cross-checks.

Investigating 5 different models we find indications that:

	WMAP3	RP	SUGRA	EQn_w120	EQp_w120
C-M	—	-	+	+	-
F_*	+	—	+	+	+
xTf	++	+	-	+	+
Lx-T	+	-	+	+	+

Outlook (besides trying to understand what we are doing):

Larger simulations (increasing statistics for massive clusters) and further test:

