Dynamical Dark Energy: Theory and Data

Ruth Durrer

Department of Theoretical Physics
Geneva University
Switzerland

Dark Energy, Munich, October 8, 2008
Outline

1. Introduction
2. Requirements on a effective physical theory
3. Scalar field dark energy
4. Dark gravity
5. Inhomogeneities (back-reaction)
6. Conclusions
Supernova observations, CMB data, measurements of the Hubble parameter, BAO are in good agreement with a flat $\Lambda$CDM Universe with cosmological constant, $\Omega_\Lambda \simeq 0.74$. 

Dunkley et al. 2008
Supernova observations, CMB data, measurements of the Hubble parameter, BAO are in good agreement with a flat $\Lambda$CDM Universe with cosmological constant, $\Omega_\Lambda \simeq 0.74$. 

Komatsu et al. 2008
Observational tests

\[ H_0 d_L(z) = \frac{1 + z}{\sqrt{-\Omega_k}} \sin \left( \sqrt{-\Omega_k} \int_0^z dz' \frac{H_0}{H(z')} \right) = (1 + z)D(z) \]

\[ \frac{H(z)}{H_0} = \sqrt{\Omega_m (1 + z)^3 + \Omega_k (1 + z)^2 + \Omega_{de} \exp \left( 3 \int_0^z \frac{1 + w(z')}{1 + z'} dz' \right)} \]

\[ w(z) = \frac{2(1+z)(1+\Omega_k D^2)D'' - [(1+z)^2 \Omega_k D'^2 + 2(1+z)\Omega_k DD' - 3(1+\Omega_k D^2)]D'}{3((1+z)^2[\Omega_k + (1+z)\Omega_m]D'^2 - (1+\Omega_k D^2))D'} \]

Fitting \( w(z) \) from luminosity distances strongly depends on a precise measurement of \( \Omega_m \) and \( \Omega_k \).

**Consistency test for flat \( \Lambda \)CDM** (Zunckel & Clarkson, 2008)

\[ \Omega_m = \frac{1 - D'^2(z)}{[(1 + z)^3 - 1]D'^2(z)} = \Omega_m(z) \quad \forall z . \]

\[ \mathcal{L}(z) = \Omega_m'(z) \equiv 0 . \]
Observational tests

\[ H_0 d_L(z) = \frac{1 + z}{\sqrt{-\Omega_k}} \sin \left( \sqrt{-\Omega_k} \int_0^z dz' \frac{H_0}{H(z')} \right) = (1 + z) D(z) \]

\[ \frac{H(z)}{H_0} = \sqrt{\Omega_m (1 + z)^3 + \Omega_k (1 + z)^2 + \Omega_{de} \exp \left( 3 \int_0^z \frac{1 + w(z')}{1 + z'} dz' \right)} \]

\[ w(z) = \frac{2(1+z)(1+\Omega_k D^2)D'' - [(1+z)^2 \Omega_k D'^2 + 2(1+z) \Omega_k D D' - 3(1+\Omega_k D^2)] D'}{3[(1+z)^2[\Omega_k + (1+z)\Omega_m]D'^2 - (1+\Omega_k D^2)] D'} \]

Fitting \( w(z) \) from luminosity distances strongly depends on a precise measurement of \( \Omega_m \) and \( \Omega_k \).

Consistency test for flat \( \Lambda \)CDM \hspace{1cm} (Zunckel & Clarkson, 2008)

\[ \Omega_m = \frac{1 - D'^2(z)}{[(1 + z)^3 - 1]D'^2(z)} = \Omega_m(z) \quad \forall z. \]

\[ \mathcal{L}(z) = \Omega'_m(z) \equiv 0. \]
Observational tests

\[ H_0 d_L(z) = \frac{1 + z}{\sqrt{-\Omega_k}} \sin \left( \sqrt{-\Omega_k} \int_0^z dz' \frac{H_0}{H(z')} \right) = (1 + z) D(z) \]

\[ \frac{H(z)}{H_0} = \sqrt{\Omega_m (1 + z)^3 + \Omega_k (1 + z)^2 + \Omega_{de} \exp \left( 3 \int_0^z \frac{1 + w(z')}{1 + z'} dz' \right) } \]

\[ w(z) = \frac{2(1+z)(1+\Omega_k D^2) D'' - [(1+z)^2 \Omega_k D'^2 + 2(1+z) \Omega_k DD' - 3(1+\Omega_k D^2)] D'} {3 [(1+z)^2 [\Omega_k + (1+z) \Omega_m] D'^2 - (1+\Omega_k D^2)] D'} \]

Fitting \( w(z) \) from luminosity distances strongly depends on a precise measurement of \( \Omega_m \) and \( \Omega_k \).

Consistency test for flat \( \Lambda \)CDM \hspace{1cm} (Zunckel & Clarkson, 2008)

\[ \Omega_m = \frac{1 - D'^2(z)}{[(1 + z)^3 - 1] D'^2(z)} = \Omega_m(z) \hspace{0.5cm} \forall z . \]

\[ \mathcal{L}(z) = \Omega'_m(z) \equiv 0 . \]
Observational tests

\[ \Lambda : \quad w(z) = -1 \quad w(z) = -0.8 \quad w(z) = -1 + \frac{0.5z}{1 + z} \quad w(z) = -1 + \frac{1.5z}{1 + z} \quad w(z) = -1 - \frac{0.2}{1 + e^{-0.5z / 0.05}} \]

(Zunckel & Clarkson, 2008)
A cosmological constant $\Lambda \simeq 5 \times 10^{-66}\text{eV}^2$ or $\rho_\Lambda \simeq (2.3 \times 10^{-3}\text{eV})^4$ fits the data reasonably well.

**Fine tuning:** What determines this small value? A cosmological constant is not protected from quantum corrections. So for a cutoff scale $E_c$ we would naturally expect a cosmological constant of the order $\rho_\Lambda \simeq E_c^4$. Certainly, $E_c \geq 1\text{TeV}$.

**Coincidence:** Why is the cosmological constant just now of the order of the critical density?

These problems have prompted researchers to look for other ‘more natural’ solutions...
A cosmological constant $\Lambda \simeq 5 \times 10^{-66} \text{eV}^2$ or $\rho_\Lambda \simeq (2.3 \times 10^{-3} \text{eV})^4$ fits the data reasonably well.

**Fine tuning:** What determines this small value? A cosmological constant is not protected from quantum corrections. So for a cutoff scale $E_c$ we would naturally expect a cosmological constant of the order $\rho_\Lambda \simeq E_c^4$. Certainly, $E_c \geq 1 \text{TeV}$.

**Coincidence:** Why is the cosmological constant just now of the order of the critical density?

These problems have prompted researchers to look for other ‘more natural’ solutions...
The cosmological constant

- A cosmological constant $\Lambda \simeq 5 \times 10^{-66} \text{eV}^2$ or $\rho_\Lambda \simeq (2.3 \times 10^{-3} \text{eV})^4$ fits the data reasonably well.

- **Fine tuning:** What determines this small value? A cosmological constant is not protected from quantum corrections. So for a cutoff scale $E_c$ we would naturally expect a cosmological constant of the order $\rho_\Lambda \simeq E_c^4$. Certainly, $E_c \geq 1 \text{TeV}$.

- **Coincidence:** Why is the cosmological constant just now of the order of the critical density?

These problems have prompted researchers to look for other ’more natural’ solutions...
A cosmological constant $\Lambda \simeq 5 \times 10^{-66} \text{eV}^2$ or $\rho_\Lambda \simeq (2.3 \times 10^{-3} \text{eV})^4$ fits the data reasonably well.

**Fine tuning:** What determines this small value? A cosmological constant is not protected from quantum corrections. So for a cutoff scale $E_c$ we would naturally expect a cosmological constant of the order $\rho_\Lambda \simeq E_c^4$. Certainly, $E_c \geq 1 \text{TeV}$.

**Coincidence:** Why is the cosmological constant just now of the order of the critical density?

These problems have prompted researchers to look for other ’more natural’ solutions...
What are the possibilities?

- **Changing the matter Lagrangian**, but not the gravitational sector. The graviton is a massless spin 2 particle. (Quintessence, k-essence, $f(R)$, Brans-Dicke)

- **Changing gravity**, ’dark gravity’: braneworlds, massive gravity, de-gravitation, non-locality, emergent gravity...

- **Inhomogeneities** are strongly affecting $H(z)$ and $d_L(z)$, back-reaction, violation of the Copernican principle.
Possibilities for dark energy

What are the possibilities?

- Changing the matter Lagrangian, but not the gravitational sector. The graviton is a massless spin 2 particle. (Quintessence, k-essence, $f(R)$, Brans-Dicke)
- Changing gravity, ’dark gravity’: braneworl ds, massive gravity, de-gravitation, non-locality, emergent gravity...
- Inhomogeneities are strongly affecting $H(z)$ and $d_L(z)$, back-reaction, violation of the Copernican principle.
Possibilities for dark energy

What are the possibilities?

- **Changing the matter Lagrangian**, but not the gravitational sector. The graviton is a massless spin 2 particle. (Quintessence, k-essence, $f(R)$, Brans-Dicke)

- **Changing gravity, ’dark gravity’**: braneworlds, massive gravity, de-gravitation, non-locality, emergent gravity...

- **Inhomogeneities** are strongly affecting $H(z)$ and $d_L(z)$, back-reaction, violation of the Copernican principle.
possibilities for dark energy

de Rahm & Tolley, 2008
Requirements on a effective physical theory

- Dark energy is an **infrared** phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.

- We can interpret the low energy theory as some 'effective theory' which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?

  - A **mathematical** description
  - A **Lagrangian formulation** (every degree of freedom has a kinetic term).
  - **Lorentz invariance** (not simply covariance, no 'absolute element').
  - **No ghosts** (degrees of freedom with wrong sign of the kinetic term).
  - **No tachyons** (potentials need to have a minimum).
  - **No super-luminal motion** (k-essence)
Requirements on a effective physical theory

- Dark energy is an infrared phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.

- We can interpret the low energy theory as some 'effective theory' which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?

  - A mathematical description
  - A Lagrangian formulation (every degree of freedom has a kinetic term).
  - Lorentz invariance (not simply covariance, no 'absolute element').
  - No ghosts (degrees of freedom with wrong sign of the kinetic term).
  - No tachyons (potentials need to have a minimum).
  - No super-luminal motion (k-essence)
Requirements on a effective physical theory

- Dark energy is an **infrared** phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.

- We can interpret the low energy theory as some ’**effective theory**’ which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?

- A **mathematical** description
  - A Lagrangian formulation (every degree of freedom has a kinetic term).
  - Lorentz invariance (not simply covariance, no ’absolute element’).
  - No ghosts (degrees of freedom with wrong sign of the kinetic term).
  - No tachyons (potentials need to have a minimum).
  - No super-luminal motion (k-essence)
Requirements on a effective physical theory

- Dark energy is an **infrared** phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.
- We can interpret the low energy theory as some ’**effective theory**’ which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?
  - A **mathematical** description
  - A **Lagrangian formulation** (every degree of freedom has a kinetic term).
    - Lorentz invariance (not simply covariance, no ’absolute element’).
    - **No ghosts** (degrees of freedom with wrong sign of the kinetic term).
    - **No tachyons** (potentials need to have a minimum).
    - **No super-luminal motion** (k-essence)
Requirements on a effective physical theory

- Dark energy is an **infrared** phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.

- We can interpret the low energy theory as some ‘**effective theory**’ which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?

- **A mathematical description**

- **A Lagrangian formulation** (every degree of freedom has a kinetic term).

- **Lorentz invariance** (not simply covariance, no ‘absolute element’).

- **No ghosts** (degrees of freedom with wrong sign of the kinetic term).

- **No tachyons** (potentials need to have a minimum).

- **No super-luminal motion** (k-essence)
Requirements on a effective physical theory

- Dark energy is an \textit{infrared} phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.

- We can interpret the low energy theory as some \textit{’effective theory’} which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?

- A \textbf{mathematical} description

- A \textbf{Lagrangian formulation} (every degree of freedom has a kinetic term).

- \textbf{Lorentz invariance} (not simply covariance, no \textit{’absolute element’}).

- No \textbf{ghosts} (degrees of freedom with wrong sign of the kinetic term).

- No \textbf{tachyons} (potentials need to have a minimum).

- No \textbf{super-luminal motion} (k-essence).
Requirements on a effective physical theory

- Dark energy is an infrared phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.
- We can interpret the low energy theory as some ‘effective theory’ which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?
  - A mathematical description
  - A Lagrangian formulation (every degree of freedom has a kinetic term).
  - Lorentz invariance (not simply covariance, no ’absolute element’).
  - No ghosts (degrees of freedom with wrong sign of the kinetic term).
  - No tachyons (potentials need to have a minimum).
  - No super-luminal motion (k-essence)
Requirements on an *effective* physical theory

- Dark energy is an *infrared* phenomenon. If we want to change physics to accommodate it, we have to change physics in the infrared.
- We can interpret the low energy theory as some ‘*effective theory*’ which may therefore not be as restricted as the underlying high energy theory. What are the basic requirements which we nevertheless want to demand?
  - A *mathematical* description
  - A *Lagrangian formulation* (every degree of freedom has a kinetic term).
  - *Lorentz invariance* (not simply covariance, no ‘absolute element’).
  - No *ghosts* (degrees of freedom with wrong sign of the kinetic term).
  - No *tachyons* (potentials need to have a minimum).
  - No *super-luminal motion* (k-essence)
The problem with k-essence

\[ \mathcal{L} = \sqrt{-g}P(\phi, X), \quad X = \frac{1}{2} (\nabla \phi)^2 \]

\[ c_s^2 = \frac{P'}{2XP'' + P'}, \quad ' = \frac{d}{dX}. \]

Tracking solution \( \Rightarrow P = \phi^{-2} \rho(X). \)

Such models have a radiation fix-point, \( w_k = 1/3, \ \Omega_k \ll 1 \) and a k-essence fix-point, \( w_k < -1/3, \ \Omega_k \simeq 1. \)

In certain cases (for certain parameters of the Lagrangian) k-essence automatically goes from the radiation to the k-essence fix-point when the Universe becomes matter dominated.

One can show that in order to do this k-essence has to pass through a phase with \( c_s^2 > 1. \)

If k-essence is to solve the coincidence problem, it has to exhibit super-luminal motion.

Bonvin et al., 2006
The problem with k-essence

\[ \mathcal{L} = \sqrt{-g} P(\phi, X), \quad X = \frac{1}{2} (\nabla \phi)^2 \]

\[ c_s^2 = \frac{P'}{2XP'' + P'}, \quad \phi' = \frac{d}{dX}. \]

Tracking solution \( \Rightarrow P = \phi^{-2} \rho(X) \).

Such models have a radiation fix-point, \( w_k = 1/3, \ O_k \ll 1 \) and a k-essence fix-point, \( w_k < -1/3, \ O_k \approx 1 \).

In certain cases (for certain parameters of the Lagrangian) k-essence automatically goes from the radiation to the k-essence fix-point when the Universe becomes matter dominated.

One can show that in order to do this k-essence has to pass through a phase with \( c_s^2 > 1 \).

If k-essence is to solve the coincidence problem, it has to exhibit super-luminal motion.

Bonvin et al., 2006
The problem with k-essence

\[
\mathcal{L} = \sqrt{-g} P(\phi, X), \quad X = \frac{1}{2} (\nabla \phi)^2
\]

\[
c_s^2 = \frac{P'}{2XP'' + P'}, \quad ' = \frac{d}{dX}.
\]

Tracking solution \(\Rightarrow P = \phi^{-2} \rho(X)\).

Such models have a radiation fix-point, \(w_k = 1/3, \Omega_k \ll 1\) and a k-essence fix-point, \(w_k < -1/3, \Omega_k \simeq 1\).

In certain cases (for certain parameters of the Lagrangian) k-essence automatically goes from the radiation to the k-essence fix-point when the Universe becomes matter dominated.

One can show that in order to do this k-essence has to pass through a phase with \(c_s^2 > 1\).

If k-essence is to solve the coincidence problem, it has to exhibit super-luminal motion.

Bonvin et al., 2006
The problem with k-essence

\[ \mathcal{L} = \sqrt{-g}P(\phi, X), \quad X = \frac{1}{2}(\nabla \phi)^2 \]

\[ c_s^2 = \frac{P'}{2XP'' + P'}, \quad ' = \frac{d}{dX}. \]

Tracking solution \( \Rightarrow P = \phi^{-2}p(X) \).

Such models have a radiation fix-point, \( w_k = 1/3, \ \Omega_k \ll 1 \) and a k-essence fix-point, \( w_k < -1/3, \ \Omega_k \simeq 1 \).

In certain cases (for certain parameters of the Lagrangian) k-essence automatically goes from the radiation to the k-essence fix-point when the Universe becomes matter dominated.

One can show that in order to do this k-essence has to pass through a phase with \( c_s^2 > 1 \).

If k-essence is to solve the coincidence problem, it has to exhibit super-luminal motion.

Bonvin et al., 2006
The problem with k-essence

Bonvin et al., 2006
Quintessence

- If the energy density of a scalar field is dominated by the potential, 
  \[ w_q = \frac{1}{2} \dot{\varphi}^2 - \frac{1}{2} \dot{\varphi}^2 + V \] becomes negative.

- If \( V(\phi) \propto \varphi^{-\alpha} \), or \( V(\phi) \propto e^{-\phi/m} \), the scalar field has scaling attractor (Peebles & Ratra, 1988; Wetterich, 1988) solutions with 
  \[ w_q = \frac{\alpha w_m - 2}{\alpha + 2} \].

- If \( \alpha \gg 2 \) the scalar field 'tracks' the matter behavior, but decays somewhat slower, so that it comes to dominate eventually.

- Note also that if \( \alpha \geq 4 \), quintessence domination does not mean acceleration.

- The transition to an accelerating solution with \( w_q \sim -1 \) needs one or several additional ingredients often involving fine tuning.
Quintessence

- If the energy density of a scalar field is dominated by the potential, $w_q = \frac{1}{2} \frac{\dot{\phi}^2 - V}{\dot{\phi}^2 + V}$ becomes negative.

- If $V(\phi) \propto \phi^{-\alpha}$, or $V(\phi) \propto e^{-\phi/m}$, the scalar field has scaling attractor (Peebles & Ratra, 1988; Wetterich, 1988) solutions with $w_q = (\alpha w_m - 2)/(\alpha + 2)$.

- If $\alpha \gg 2$ the scalar field 'tracks' the matter behavior, but decays somewhat slower, so that it comes to dominate eventually.

- Note also that if $\alpha \geq 4$, quintessence domination does not mean acceleration.

- The transition to an accelerating solution with $w_q \approx -1$ needs one or several additional ingredients often involving fine tuning.
If the energy density of a scalar field is dominated by the potential, 
\[ w_q = \frac{1}{2} \frac{\dot{\phi}^2 - V}{\dot{\phi}^2 + V} \] becomes negative.

If \( V(\phi) \propto \phi^{-\alpha} \), or \( V(\phi) \propto e^{-\phi/m} \), the scalar field has scaling attractor (Peebles & Ratra, 1988; Wetterich, 1988) solutions with \( w_q = \frac{\alpha w_m - 2}{\alpha + 2} \).

If \( \alpha \gg 2 \) the scalar field ‘tracks’ the matter behavior, but decays somewhat slower, so that it comes to dominate eventually.

Note also that if \( \alpha \geq 4 \), quintessence domination does not mean acceleration.

The transition to an accelerating solution with \( w_q \simeq -1 \) needs one or several additional ingredients often involving fine tuning.
Quintessence

- If the energy density of a scalar field is dominated by the potential, \( w_q = \frac{\frac{1}{2} \dot{\phi}^2 - V}{\frac{1}{2} \dot{\phi}^2 + V} \) becomes negative.

- If \( V(\phi) \propto \phi^{-\alpha} \), or \( V(\phi) \propto e^{-\phi/m} \), the scalar field has scaling attractor (Peebles & Ratra, 1988; Wetterich, 1988) solutions with \( w_q = (\alpha w_m - 2) / (\alpha + 2) \).

- If \( \alpha \gg 2 \) the scalar field 'tracks' the matter behavior, but decays somewhat slower, so that it comes to dominate eventually.

- Note also that if \( \alpha \geq 4 \), quintessence domination does not mean acceleration.

- The transition to an accelerating solution with \( w_q \simeq -1 \) needs one or several additional ingredients often involving fine tuning.
If the energy density of a scalar field is dominated by the potential, \( w_q = \frac{\dot{\phi}^2 - V}{\dot{\phi}^2 + V} \) becomes negative.

If \( V(\phi) \propto \phi^{-\alpha} \), or \( V(\phi) \propto e^{-\phi/m} \), the scalar field has scaling attractor (Peebles & Ratra, 1988; Wetterich, 1988) solutions with \( w_q = (\alpha w_m - 2)/(\alpha + 2) \).

If \( \alpha \gg 2 \) the scalar field ‘tracks’ the matter behavior, but decays somewhat slower, so that it comes to dominate eventually.

Note also that if \( \alpha \geq 4 \), quintessence domination does not mean acceleration.

The transition to an accelerating solution with \( w_q \simeq -1 \) needs one or several additional ingredients often involving fine tuning.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are $\mathcal{L} = \sqrt{-g} f(R)$.

Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

These models have, however, a very particular coupling to matter.

Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need ’fine tuning’ of several parameters and are ad-hoc.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are \( \mathcal{L} = \sqrt{-g} f(R) \).

Via \( \varphi = \log(1 + f'(R)) \) and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

These models have, however, a very particular coupling to matter.

Simple \( f(R) = R + \mu^4/R \) theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need 'fine tuning' of several parameters and are ad-hoc.
**$f(R)$ and Brans-Dicke theories**

- The simplest modification of the gravitational Lagrangian which avoid the **Ostrogradski theorem (1850)** are $\mathcal{L} = \sqrt{-g} f(R)$.

- Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

- Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

- These models have, however a very particular coupling to matter.

- Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

- Such models have no Minkowski vacuum solution (have no flat solutions).

- The models proposed so far need ’fine tuning’ of several parameters and are ad-hoc.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are $\mathcal{L} = \sqrt{-g} f(R)$.

Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

These models have, however a very particular coupling to matter.

Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need 'fine tuning' of several parameters and are ad-hoc.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are $\mathcal{L} = \sqrt{-g} f(R)$.

Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

These models have, however a very particular coupling to matter.

Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need ’fine tuning’ of several parameters and are ad-hoc.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are $\mathcal{L} = \sqrt{-g} f(R)$.

Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

These models have, however, a very particular coupling to matter.

Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need 'fine tuning' of several parameters and are ad-hoc.
The simplest modification of the gravitational Lagrangian which avoid the Ostrogradski theorem (1850) are $\mathcal{L} = \sqrt{-g} f(R)$.

Via $\varphi = \log(1 + f'(R))$ and a conformal transformation of the metric (to the Einstein frame) they can be converted into scalar-tensor models (quintessence models).

Via a conformal trafo (to the Einstein frame), Brans-Dicke theories can be converted into scalar-tensor models.

These models have, however, a very particular coupling to matter.

Simple $f(R) = R + \mu^4/R$ theories do not work. They cannot satisfy the solar system constraints and play the rôle of dark energy. More complicated models can work (see talk by Wayne Hu).

Such models have no Minkowski vacuum solution (have no flat solutions).

The models proposed so far need 'fine tuning' of several parameters and are ad-hoc.
Surprisingly, branes with infinite extra dimensions and
\[
S = \frac{\kappa^2}{2} \left[ \int_{brane} d^4 x \sqrt{-g_4} R_4 + r_c^{-1} \int_{bulk} d^5 x \sqrt{-g_5} R_5 \right]
\]
can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)

\[
H^2 - H/r_c = \frac{\kappa^2}{3} \rho, \text{ if } \rho \to 0, \ H \to H_{\infty} = 1/r_c.
\]

This model is at the verge of being excluded observationally, and it has a ghost.

The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).

Gravity becomes weaker on larger scales.

Higher dimensional theories contain a tower of KK gravitons.

The graviton in higher dimensions transforms under $SO(2 + d)$ with spin $2 \Rightarrow$ number of degrees of freedom. For $d = 1$ this are $2 \cdot 2 + 1 = 5$, the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.
Braneworlds

- Surprisingly, branes with infinite extra dimensions and
  \[ S = \frac{\kappa^2}{2} \left[ \int_{brane} d^4 x \sqrt{-g_4} R_4 + r_c^{-1} \int_{bulk} d^5 x \sqrt{-g_5} R_5 \right] \]
  
  can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)

- This model is at the verge of being excluded observationally, and it has a ghost.
- The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).
- Gravity becomes weaker on larger scales.
- Higher dimensional theories contain a tower of KK gravitons.
- The graviton in higher dimensions transforms under \( SO(2 + d) \) with spin \( 2 \Rightarrow \) number of degrees of freedom. For \( d = 1 \) this are \( 2 \cdot 2 + 1 = 5 \), the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.
Surprisingly, branes with infinite extra dimensions and

\[ S = \frac{\kappa^2}{2} \left[ \int_{brane} d^4x \sqrt{-g} R^4 + r_c^{-1} \int_{bulk} d^5x \sqrt{-g} R^5 \right] \]

can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)

\[ H^2 - \frac{H}{r_c} = \frac{\kappa^2}{3} \rho, \text{ if } \rho \to 0, \ H \to H_{\infty} = 1/r_c. \]

This model is at the verge of being excluded observationally, and it has a ghost.

The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).

Gravity becomes weaker on larger scales.

Higher dimensional theories contain a tower of KK gravitons.

The graviton in higher dimensions transforms under \( SO(2 + d) \) with spin 2 \( \Rightarrow \) number of degrees of freedom. For \( d = 1 \) this are \( 2 \cdot 2 + 1 = 5 \), the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.
Surprisingly, branes with infinite extra dimensions and
\[
S = \frac{\kappa^2}{2} \left[ \int_{\text{brane}} d^4x \sqrt{-g_4} R_4 + r_c^{-1} \int_{\text{bulk}} d^5x \sqrt{-g_5} R_5 \right]
\]
can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)
\[
H^2 - H/r_c = \frac{\kappa^2}{3} \rho, \text{ if } \rho \to 0, \ H \to H_\infty = 1/r_c.
\]
This model is at the verge of being excluded observationally, and it has a ghost.
The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).
Gravity becomes weaker on larger scales.
Higher dimensional theories contain a tower of KK gravitons.
The graviton in higher dimensions transforms under \( SO(2 + d) \) with spin 2 \( \Rightarrow \) number of degrees of freedom. For \( d = 1 \) this are \( 2 \cdot 2 + 1 = 5 \), the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.
Surprisingly, branes with infinite extra dimensions and

\[
S = \frac{\kappa^2}{2} \left[ \int_{brane} d^4 x \sqrt{-g_4} R_4 + r_c^{-1} \int_{bulk} d^5 x \sqrt{-g_5} R_5 \right]
\]

can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)

\[
H^2 - H/r_c = \frac{\kappa^2}{3} \rho, \text{ if } \rho \rightarrow 0, \ H \rightarrow H_\infty = 1/r_c.
\]

This model is at the verge of being excluded observationally, and it has a ghost.

The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).

Gravity becomes weaker on larger scales.

Higher dimensional theories contain a tower of KK gravitons.

The graviton in higher dimensions transforms under \(SO(2 + d)\) with spin

\[2 \Rightarrow \text{number of degrees of freedom. For } d = 1 \text{ this are } 2 \cdot 2 + 1 = 5, \text{ the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.} \]
Surprisingly, branes with infinite extra dimensions and

\[
S = \frac{\kappa^2}{2} \left[ \int_{\text{brane}} d^4x \sqrt{-g} R_4 + r_c^{-1} \int_{\text{bulk}} d^5x \sqrt{-g} R_5 \right]
\]

can exhibit infrared modifications of gravity, (DGP model, Dvali et al. 2000, see talk by R. Maartens)

\[
H^2 - \frac{H}{r_c} = \frac{\kappa^2}{3} \rho, \text{ if } \rho \to 0, \ H \to H_\infty = 1/r_c.
\]

This model is at the verge of being excluded observationally, and it has a ghost.

The ghost can be avoided when embedding this construction in a 6d bulk with non-vanishing 3-brane tension. The gravitational law then cascades from 6d, at very large scales to 5d to 4d behavior (de Rahm et al. 2007).

Gravity becomes weaker on larger scales.

Higher dimensional theories contain a tower of KK gravitons.

The graviton in higher dimensions transforms under $SO(2 + d)$ with spin $2 \Rightarrow$ number of degrees of freedom. For $d = 1$ this are $2 \cdot 2 + 1 = 5$, the helicity 2 graviton, a massless gravi-vector and a massless gravi-scalar.
Instead of asking why is Λ so small we may ask why does vacuum gravitate so little.

Promoting Newton’s constant to an operator, $M_P^2 f(L^2\Box)G_{\mu\nu} = T_{\mu\nu}$ we can choose $f(x) \rightarrow_{x \rightarrow 0} 1$ such that we recover Einstein gravity on small scales and $f(x) \rightarrow_{x \rightarrow \infty} \infty$ such that very large scale / slowly varying energy distributions do no gravitate (degravitate, Dvali et al. 2005-08).

It can be shown that such 'high pass filters' always correspond to a graviton mass or resonance... (see Dvali).

Padmanabhan put forward the idea that the metric, space time curvature be an emergent phenomena, like entropy or temperature. From generalizations of the Bekenstein-Hawking entropy formula he then motivates to modify Einstein’s eq. to $M_P^2 G_{\mu\nu} n^\mu n^\nu = T_{\mu\nu} n^\mu n^\nu \ \forall n^\mu$ lightlike.

These are attempts to solve the maybe deeper problem why do we not observe a large cosmological constant, but do they also have a bearing on dark energy?
Instead of asking why is $\Lambda$ so small we may ask why does vacuum gravitate so little.

Promoting Newton’s constant to an operator, $M_P^2 f(L^2 \Box) G_{\mu\nu} = T_{\mu\nu}$ we can choose $f(x) \to x \to 0 1$ such that we recover Einstein gravity on small scales and $f(x) \to x \to \infty \infty$ such that very large scale / slowly varying energy distributions do no gravitate (degravitate, Dvali et al. 2005-08).

It can be shown that such ’high pass filters’ always correspond to a graviton mass or resonance... (see Dvali).

Padmanabhan put forward the idea that the metric, space time curvature be an emergent phenomena, like entropy or temperature. From generalizations of the Bekenstein-Hawking entropy formula he then motivates to modify Einstein’s eq. to

$$M_P^2 G_{\mu\nu} n^\mu n^\nu = T_{\mu\nu} n^\mu n^\nu \quad \forall n^\mu \text{ lightlike.}$$

These are attempts to solve the maybe deeper problem why do we not observe a large cosmological constant, but do they also have a bearing on dark energy?
non-locality, degravitation, filtering, emergent gravity

Instead of asking why is $\Lambda$ so small we may ask why does vacuum gravitate so little.

Promoting Newton’s constant to an operator, $M_P^2 f(L^2 \Box) G_{\mu\nu} = T_{\mu\nu}$ we can choose $f(x) \rightarrow x \rightarrow 0 1$ such that we recover Einstein gravity on small scales and $f(x) \rightarrow x \rightarrow \infty \infty$ such that very large scale / slowly varying energy distributions do no gravitate (degravitate, Dvali et al. 2005-08).

It can be shown that such ’high pass filters’ always correspond to a graviton mass or resonance… (see Dvali).

Padmanabhan put forward the idea that the metric, space time curvature be an emergent phenomena, like entropy or temperature. From generalizations of the Bekenstein-Hawking entropy formula he then motivates to modify Einstein’s eq. to $M_P^2 G_{\mu\nu} n^{\mu} n^{\nu} = T_{\mu\nu} n^{\mu} n^{\nu} \ \forall n^{\mu}$ lightlike.

These are attempts to solve the maybe deeper problem why do we not observe a large cosmological constant, but do they also have a bearing on dark energy?
Instead of asking why is $\Lambda$ so small we may ask why does vacuum gravitate so little.

Promoting Newton’s constant to an operator, $M_P^2 f(L^2 \Box) G_{\mu\nu} = T_{\mu\nu}$ we can choose $f(x) \rightarrow_{x \rightarrow 0} 1$ such that we recover Einstein gravity on small scales and $f(x) \rightarrow_{x \rightarrow \infty} \infty$ such that very large scale / slowly varying energy distributions do no gravitate (degravitate, Dvali et al. 2005-08).

It can be shown that such 'high pass filters' always correspond to a graviton mass or resonance... (see Dvali).

Padmanabhan put forward the idea that the metric, space time curvature be an emergent phenomena, like entropy or temperature. From generalizations of the Bekenstein-Hawking entropy formula he then motivates to modify Einstein’s eq. to

$$M_P^2 G_{\mu\nu} n^\mu n^\nu = T_{\mu\nu} n^\mu n^\nu \quad \forall n^\mu \text{ lightlike.}$$

These are attempts to solve the maybe deeper problem why do we not observe a large cosmological constant, but do they also have a bearing on dark energy?
Instead of asking why is \( \Lambda \) so small we may ask why does vacuum gravitate so little.

Promoting Newton’s constant to an operator, \( M_P^2 f(L^2 \Box) G_{\mu\nu} = T_{\mu\nu} \) we can choose \( f(x) \to x \to 0 1 \) such that we recover Einstein gravity on small scales and \( f(x) \to x \to \infty \infty \) such that very large scale / slowly varying energy distributions do no gravitate (degravitate, Dvali et al. 2005-08).

It can be shown that such ’high pass filters’ always correspond to a graviton mass or resonance... (see Dvali).

Padmanabhan put forward the idea that the metric, space time curvature be an emergent phenomena, like entropy or temperature. From generalizations of the Bekenstein-Hawking entropy formula he then motivates to modify Einstein’s eq. to
\[
M_P^2 G_{\mu\nu} n^\mu n^\nu = T_{\mu\nu} n^\mu n^\nu \quad \forall n^\mu \text{ lightlike.}
\]

These are attempts to solve the maybe deeper problem why do we not observe a large cosmological constant, but do they also have a bearing on dark energy?
Can it be that we ‘live’ in a large void and the local Hubble parameter is significantly larger than the mean Hubble parameter? And can this ‘fool’ us into an interpretation of ‘acceleration’.

\[ \chi^2 = 186 \quad \text{d.o.f.} = 181 \]


Can also fit the WMAP data if we allow $n_s \approx 0.75$ and running (or a bump in the power spectrum and/or curvature).

\[ z_{\text{jump}} = 0.085; \delta_{\text{CENTRE}} = -0.48 \]

Alexander et al, 2007
Can it be that we ’live’ in a large void and the local Hubble parameter is significantly larger than the mean Hubble parameter? And can this ’fool’ us into an interpretation of ’acceleration’.

\[ \chi^2 = 186 \quad \text{d.o.f.} = 181 \]

Riess et al. Gold data set (2006) (\( \Lambda \)CDM has \( \chi^2 = 150 \)).

Can also fit the WMAP data if we allow \( n_s \approx 0.75 \) and running (or a bump in the power spectrum and/or curvature).

\[ z_{\text{jump}} = 0.085 ; \, \delta_{\text{CENTRE}} = -0.48 \]

Alexander et al. 2007
It is well known that spherically symmetric (Lemaître, Tolman Bondi, LTB) solutions can show "apparent acceleration" (i.e. a function $d_L(z)$ like a ΛCDM Universe) even if they contain only dust.

Can we distinguish observationally a LTB Universe from a Friedmann Lemaître universe with arbitrary matter content?

Yes (Clarkson et al. 2007)

$$\Omega_k = \frac{-K}{H_0^2} = \frac{H(z)^2}{H_0^2} \frac{D'(z)^2}{D(z)^2} - 1$$

This quantity is constant (indep. of $z$) in a Friedmann Universe but depends on $z$, curvature $K(r)$, in an LTB Universe.

But it is hard to measure...
Violation of the Copernican principle

It is well known that spherically symmetric (Lemaître, Tolman Bondi, LTB) solutions can show "apparent acceleration" (i.e. a function $d_L(z)$ like a $\Lambda$CDM Universe) even if they contain only dust. Can we distinguish observationally a LTB Universe from a Friedmann Lemaître universe with arbitrary matter content?

Yes (Clarkson et al. 2007)

$$\Omega_k = \frac{-K}{H_0^2} = \frac{H(z)^2}{H_0^2} \frac{D'(z)^2 - 1}{D(z)^2}$$

This quantity is constant (indep. of $z$) in a Friedmann Universe but depends on $z$, curvature $K(r)$, in an LTB Universe. But it is hard to measure...
Violation of the Copernican principle

It is well known that spherically symmetric (Lemaître, Tolman Bondi, LTB) solutions can show "apparent acceleration" (i.e. a function $d_L(z)$ like a $\Lambda$CDM Universe) even if they contain only dust. Can we distinguish observationally a LTB Universe from a Friedmann Lemaître universe with arbitrary matter content?

Yes (Clarkson et al. 2007)

$$\Omega_k = \frac{-K}{H_0^2} = \frac{H(z)^2}{H_0^2} \frac{D'(z)^2}{D(z)^2} - 1$$

This quantity is constant (indep. of $z$) in a Friedmann Universe but depends on $z$, curvature $K(r)$, in an LTB Universe. But it is hard to measure...
Violation of the Copernican principle

It is well known that spherically symmetric (Lemaître, Tolman Bondi, LTB) solutions can show "apparent acceleration" (i.e. a function $d_L(z)$ like a $\Lambda$CDM Universe) even if they contain only dust.

Can we distinguish observationally a LTB Universe from a Friedmann Lemaître universe with arbitrary matter content?

Yes (Clarkson et al. 2007)

$$\Omega_k = \frac{-K}{H_0^2} = \frac{H(z)^2}{H_0^2} \frac{D'(z)^2 - 1}{D(z)^2}$$

This quantity is constant (indep. of $z$) in a Friedmann Universe but depends on $z$, curvature $K(r)$, in an LTB Universe.

But it is hard to measure...
Can it be that inhomogeneities do not ’average out’ in the luminosity distance?

That the fact that most regions of the Universe are rather empty and matter has condensed into relatively thin ’shells’, a weblike structure, severely affects the luminosity distance, $d_L(z)$?

Even though present calculations (using toy models) rather give effects of the order of 10% (Li et al, 2007; Räsänen, 2008), we are not sure that this is impossible. See talks by D. Wiltshire, S. Räsänen

Nevertheless, such models always satisfy $tH(t) \leq 1$. 
Can it be that inhomogeneities do not ’average out’ in the luminosity distance?

That the fact that most regions of the Universe are rather empty and matter has condensed into relatively thin ’shells’, a weblike structure, severely affects the luminosity distance, $d_L(z)$?

Even though present calculations (using toy models) rather give effects of the order of 10% (Li et al, 2007; Räsänen, 2008), we are not sure that this is impossible. See talks by D. Wiltshire, S. Räsänen

Nevertheless, such models always satisfy $tH(t) \leq 1$. 
Can it be that inhomogeneities do not ’average out’ in the luminosity distance?

That the fact that most regions of the Universe are rather empty and matter has condensed into relatively thin ’shells’, a weblike structure, severely affects the luminosity distance, $d_L(z)$?

Even though present calculations (using toy models) rather give effects of the order of 10% (Li et al, 2007; Räsänen, 2008), we are not sure that this is impossible. See talks by D. Wiltshire, S. Räsänen

Nevertheless, such models always satisfy $tH(t) \leq 1$. 
Can it be that inhomogeneities do not ’average out’ in the luminosity distance?

That the fact that most regions of the Universe are rather empty and matter has condensed into relatively thin ’shells’, a weblike structure, severely affects the luminosity distance, \( d_L(z) \)?

Even though present calculations (using toy models) rather give effects of the order of 10% (Li et al, 2007; Räsänen, 2008), we are not sure that this is impossible. See talks by D. Wiltshire, S. Räsänen

Nevertheless, such models always satisfy \( tH(t) \leq 1 \).
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the 'observed value' of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the 'coincidence problem' remains an issue. (For a proposal see Wetterich's talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look 'barock'.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the 'observed value' of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the 'coincidence problem' remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look 'barock'.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the ’observed value’ of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the ’coincidence problem’ remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look ’barock’.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the ’observed value’ of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the ’coincidence problem’ remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look ’barock’.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the 'observed value' of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the 'coincidence problem' remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look 'barock'.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, \( \Lambda \)CDM can fit present cosmological data.
- It is hard to motivate the ’observed value’ of \( \Lambda \).
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the ’coincidence problem’ remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and \( f(R) \) theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look ’barock’.
- There are several possibilities to understand why the value of \( \Lambda \) should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the 'observed value' of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the 'coincidence problem' remains an issue. (For a proposal see Wetterich's talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look 'barock'.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?
Conclusions

- A FL Universe with cosmological constant, $\Lambda$CDM can fit present cosmological data.
- It is hard to motivate the ’observed value’ of $\Lambda$.
- Acceleration can always be obtained from the potential energy of a scalar field. But even for scaling solutions the ’coincidence problem’ remains an issue. (For a proposal see Wetterich’s talk.)
- Effective theories, like k-essence suffer often from problems like super-luminal motion, ghosts or unbounded Hamiltonians.
- Brans-Dicke and $f(R)$ theories must be very finely tuned in order not to spoil solar system tests. The resulting Lagrangians look ’barock’.
- There are several possibilities to understand why the value of $\Lambda$ should be small, even zero, (... degravitation, emergent gravity,...) but none of them yields the observed value.
- Might it be that the Copernican principle is violated?
- Might back-reaction be important?