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gives ∞ physical meaning?

Regularization + Renormalization ( cut-off, dim, ζ )

Even then: Has the final value real sense ?

Bohr −→ Casimir −→ Pauli ...
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Casimir Effect

BC e.g. periodic
=⇒ all kind of fields
=⇒ curvature or topology

Universal process:

Sonoluminiscence (Schwinger)

Cond. matter (wetting 3He alc.)

Optical cavities

Direct experim. confirmation

Van der Waals, Lifschitz theory
Dynamical CE ⇐
Lateral CE, piston, pistol, ...

Extract energy from vacuum

CE and the cosmological constant ⇐
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On the ‘reality’ of zero point fluctuations
The Casimir effect gives no more nor less support for the “reality” of
the vacuum fluctuations than other one-loop effects in QED (like
vacuum polarization contribution to Lamb shift)

[R. Jaffe, PRD72 (2005) 021301; hep-th/0503158]
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Schwinger attempted to formulate QED without reference to ZPF

No one could show that source theory or another S-matrix based
approach can provide a complete description of QED to all orders

In QCD confinement seems to present an insuperable challenge,
since quarks and gluons do not appear in the physical S-matrix

Milonni has reformulated all of QED from the point of view of ZPF
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In modern language the Casimir energy can be expressed in terms of the
trace of the Greens function for the fluctuating field in the background of
interest (conducting plates)

E =
~

2π
Im

∫
dωω Tr

∫
d3x [G(x, x, ω + iǫ) − G0(x, x, ω + iǫ)]

G full Greens function for the fluctuating field
G0 free Greens function Trace is over spin
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=⇒ Lippman-Schwinger eq. allows full Greens f, G, be expanded as a
series in free Green’s f, G0, and the coupling to the external field

=⇒ Experimental confirmation of the Casimir effect does not establish the
reality of zero point fluctuations
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Moving mirrors modify structure of quantum vacuum

Creation and annihilation of photons; once mirrors return to rest,
some produced photons may still remain: flux of radiated particles

For a single, perfectly reflecting mirror:
# photons & energy diverge while mirror moves

Several renormalization prescriptions have been used
in order to obtain a well-defined energy

Problem: for some trajectories this finite energy is not a positive
quantity and cannot be identified with the energy of the photons

Moore; Razavy, Terning; Johnston, Sarkar; Dodonov et al; Plunien et al;
Barton, Eberlein, Calogeracos; Jaeckel, Reynaud, Lambrecht; Ford,
Vilenkin; Brevik, Milton et al; Dalvit, Maia-Neto et al; Law; Parentani, ...
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Partially transmitting mirrors, which become transparent to
very high frequencies (analytic matrix)

Proper use of a Hamiltonian method & corresponding renormalization

Proved both: # of created particles is finite & their energy is always
positive, for the whole trajectory during the mirrors’ displacement

The radiation-reaction force acting on the mirrors owing to emission-
absorption of particles is related with the field’s energy through the
energy conservation law: energy of the field at any t equals (with
opposite sign) the work performed by the reaction force up to time t

Such force is split into two parts: a dissipative force
whose work equals minus the energy of the particles that remain
& a reactive force vanishing when the mirrors return to rest

The dissipative part we obtain agrees with the other methods.
But those have problems with the reactive part, which in general
yields a non-positive energy =⇒ EXPERIMENT
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position at time T
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Johnston, Sarkar, JPA 29 (1996) 1741

Lagrangian density of the field

L(t,x) =
1

2

[
(∂tφ)2 − |∇xφ|2

]
, ∀x ∈ Ωt ⊂ R

n, ∀t ∈ R

Hamiltonian. Transform moving boundary into fixed one by
(non-conformal) change of coordinates

R : (t̄,y) → (t(t̄,y),x(t̄,y)) = (t̄,R(t̄,y))

transform Ωt into a fixed domain Ω̃

Ω̃: (t(t̄,y),x(t̄,y)) = R(t̄,y) = (t̄,R(t̄,y))

(with t̄ the new time)
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SOME DETAILS OF THE METHOD (2)
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It turns out that

H(t,x) = E(t,x) + ξ(t,x) < ∂sR(R−1(t,x)),∇xφ(t,x) >

+
1

2
ξ(t,x)φ(t,x)∂s(lnJ)|R−1(t,x)

A simple example:
Single mirror following a prescribed trajectory

R(t̄, y) = y + ǫg(t̄)

We explicitly get

H(t, x) = E(t, x) + ǫġ(t)ξ(t, x)∂xφ(t, x)
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CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393] renormalized
energy is negative: while the mirror moves, the renormalized energy
cannot be considered as the energy of the produced particles at time t

[cf. paragraph after Eq. (4.5)]
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CASE OF A SINGLE, PARTIALLY TRANSMITTING MIRROR

Seminal Davis-Fulling model [PRSL A348 (1976) 393] renormalized
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energy is negative: while the mirror moves, the renormalized energy
cannot be considered as the energy of the produced particles at time t

[cf. paragraph after Eq. (4.5)]
Our interpretation: a perfectly reflecting mirror is non-physical.
Consider, instead, a partially transmitting mirror, transparent to high
frequencies (math. implementation of a physical plate).
Trajectory (t, ǫg(t)). When mirror at rest, scattering described by matrix

S(ω) =


 s(ω) r(ω)e−2iωL

r(ω)e2iωL s(ω)




=⇒ S matrix is taken to be: (x = L position of the mirror)

→ Real in the temporal domain: S(−ω) = S∗(ω)

→ Causal: S(ω) is analytic for Im (ω) > 0

→ Unitary: S(ω)S†(ω) = Id
→ The identity at high frequencies: S(ω) → Id, when |ω| → ∞

s(ω) and r(ω) meromorphic (cut-off) functions
(material’s permitivity and resistivity) Dark Energy, Munich, October 7-11, 2008 – p. 12/26



RESULTS ARE REWARDING:
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RESULTS ARE REWARDING:

In our Hamiltonian approach

〈F̂Ha(t)〉 = − ǫ

2π2

∫
∞

0

∫
∞

0

dωdω′ωω′

ω + ω′
Re

[
e−i(ω+ω′)t ̂̇gθt(ω + ω′)

]

×[|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ǫ2)

Note this integral diverges for a perfect mirror (r ≡ −1, s ≡ 0,
ideal case), but nicely converges for our partially transmitting
(physical) one where r(ω) → 0, s(ω) → 1, as ω → ∞
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∞

0

∫
∞

0

dωdω′ωω′

ω + ω′
Re

[
e−i(ω+ω′)t ̂̇gθt(ω + ω′)

]

×[|r(ω) + r∗(ω′)|2 + |s(ω) − s∗(ω′)|2] + O(ǫ2)

Note this integral diverges for a perfect mirror (r ≡ −1, s ≡ 0,
ideal case), but nicely converges for our partially transmitting
(physical) one where r(ω) → 0, s(ω) → 1, as ω → ∞

Energy conservation is fulfilled: the dynamical energy at any
time t equals, with the opposite sign, the work performed by
the reaction force up to that time t

〈Ê(t)〉 = −ǫ

∫ t

0

〈F̂Ha(τ)〉ġ(τ)dτ
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COMPARISON WITH OTHER RESULTS

Heisenberg picture approach:

Got the “in” modes when the mirror describes the trajectory
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is the difference between the energy density of the “in” vacuum state
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COMPARISON WITH OTHER RESULTS

Heisenberg picture approach:

Got the “in” modes when the mirror describes the trajectory

Obtained the average number of produced particles after the mirror
returns to rest, by calculating the Bogoliubov coefficients

The radiation-reaction force in the Heisenberg picture, 〈F̂H(t)〉,
is the difference between the energy density of the “in” vacuum state
on the left and right sides of the mirror

Regularization is needed to obtain a well-defined (cut-off
independent) quantity

Final formula disagrees with the radiation-reaction force obtained
using the Hamiltonian approach

Been able to prove that the force coincides with the radiation-reaction
force calculated by Jaekel and Reynaud after renormalization:

〈F̂J,R,ren(t)〉 ≡ 〈F̂H,ren(t)〉
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We conclude that the method of Jaekel and Reynaud is equivalent
to the quantum theory in the Heisenberg picture
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We conclude that the method of Jaekel and Reynaud is equivalent
to the quantum theory in the Heisenberg picture

The dissipative parts of 〈F̂Ha(t)〉 and 〈F̂J,R,ren(t)〉 always agree

The reactive parts do not match, there is the relation

〈F̂Ha(t)〉 = −αǫ

2π
g̈(t) + 〈F̂J,R,ren(t)〉

Dark Energy, Munich, October 7-11, 2008 – p. 15/26



We conclude that the method of Jaekel and Reynaud is equivalent
to the quantum theory in the Heisenberg picture

The dissipative parts of 〈F̂Ha(t)〉 and 〈F̂J,R,ren(t)〉 always agree

The reactive parts do not match, there is the relation

〈F̂Ha(t)〉 = −αǫ

2π
g̈(t) + 〈F̂J,R,ren(t)〉

Crucial point: during the movement of the mirror, the work done
by the motion force 〈F̂J,R,ren(t)〉 is not a negative quantity:
the dynamical energy is not positive,
but this is the energy of the emitted photons

Dark Energy, Munich, October 7-11, 2008 – p. 15/26



We conclude that the method of Jaekel and Reynaud is equivalent
to the quantum theory in the Heisenberg picture

The dissipative parts of 〈F̂Ha(t)〉 and 〈F̂J,R,ren(t)〉 always agree

The reactive parts do not match, there is the relation

〈F̂Ha(t)〉 = −αǫ

2π
g̈(t) + 〈F̂J,R,ren(t)〉

Crucial point: during the movement of the mirror, the work done
by the motion force 〈F̂J,R,ren(t)〉 is not a negative quantity:
the dynamical energy is not positive,
but this is the energy of the emitted photons

Barton and Calogeracos [95,00]: two important differences
– First, to obtain the Schrödinger eq BC make a unitary transformation
not easily generalizable to the case of two moving mirrors
– Second, a mass renormalization is performed to eliminate the
reactive part, where the energy of the field is not a positive quantity for
all time t (suffic. small)
Again, concept of particle not well defined while mirror moves
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TWO PARTIALLY TRANSMITTING MIRRORS

Impossible, in practice, to work in the Heisenberg picture

Approach of Jaekel and Reynaud, starts from effective Hamiltonian:
dissipative part OK, but not the reactive part of the motion force and
the dynamical energy while mirrors move
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Trajectories (t, Lj(t; ǫ)), where Lj(t; ǫ) ≡ Lj + ǫgj(t), j = 1, 2
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TWO PARTIALLY TRANSMITTING MIRRORS

Impossible, in practice, to work in the Heisenberg picture

Approach of Jaekel and Reynaud, starts from effective Hamiltonian:
dissipative part OK, but not the reactive part of the motion force and
the dynamical energy while mirrors move

As before, led to use our Hamiltonian approach for ‘physical’ mirrors:
demands now considerable effort

Trajectories (t, Lj(t; ǫ)), where Lj(t; ǫ) ≡ Lj + ǫgj(t), j = 1, 2

and assume L1(t; ǫ) < L2(t; ǫ), ∀t ∈ R

Consider the change

R(t̄, y) =
1

L2 − L1
[L2(t̄; ǫ)(y − L1) + L1(t̄; ǫ)(L2 − y)]

the Hamiltonian density of the field is then

H(t, x) = E(t, x)+
∑

j=1,2

(−1)jL̇j(t; ǫ)ξ(t, x)

L2(t; ǫ) − L1(t; ǫ)

[
∂xφ(t, x)(x − L̄j(t; ǫ)) +

1

2
φ(t, x)

]

where L̄(12)
(t; ǫ) ≡ L(21)

(t; ǫ)
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In the interaction picture, while mirrors move, the full Hamiltonian is

ĤI(t) = − ǫ(g2(t) − g1(t))

L2 − L1




∫
dy

(
∂y

̂̃
φI(y)

)2

+
∑

j=1,2

αj

(
̂̃
φI(Lj)

)2



+
ǫ

2




∑

j=1,2

∫
dy

(−1)j ġj(t)
̂̃
ξI(y)

L2 − L1

(
∂y

̂̃
φI(y)(y − L̄j) +

1

2
̂̃
φI(y)

)
+ hc


 + O(ǫ2)
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φI(y)(y − L̄j) +

1

2
̂̃
φI(y)
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+ hc


 + O(ǫ2)

We prove dissipative part of motion force to coincides with the one in
J-R’s. For times τ larger than the stopping time

A1 ≡ ǫ

2




∑

j=1,2

∫
dy

(−1)j ġj(t)
̂̃
ξI(y)

L2 − L1

(
∂y

̂̃
φI(y)(y − L̄j) +

1

2
̂̃
φI(y)

)
+ hc




Integrating by parts: this dissipative part is the usual one
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1
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φI(y)

)
+ hc




Integrating by parts: this dissipative part is the usual one

No basic obstruction to extend our procedure to higher dimensions
and fields of any kind
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 + O(ǫ2)

We prove dissipative part of motion force to coincides with the one in
J-R’s. For times τ larger than the stopping time

A1 ≡ ǫ

2




∑

j=1,2

∫
dy

(−1)j ġj(t)
̂̃
ξI(y)

L2 − L1

(
∂y

̂̃
φI(y)(y − L̄j) +

1

2
̂̃
φI(y)

)
+ hc




Integrating by parts: this dissipative part is the usual one

No basic obstruction to extend our procedure to higher dimensions
and fields of any kind

There are proposals to detect the radiated photons:
Kim, Brownell, Onofrio, PRL 96 (2006) 200402
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Moving Mirrors & the Black Body Spec
Particle spectrum produced by the Fulling-Davies effect (DCE)

We here consider a different aspect of the introduction of physical,
semitransparent mirrors

Dark Energy, Munich, October 7-11, 2008 – p. 18/26



Moving Mirrors & the Black Body Spec
Particle spectrum produced by the Fulling-Davies effect (DCE)

We here consider a different aspect of the introduction of physical,
semitransparent mirrors

Consider a mirror of this sort, initially at rest, then accelerates for a
large (but finite) time, u0, along a trajectory v = 1

k (1 − e−ku)

(in light-like coords, k a frequency), and for u ≥ u0, is left moving
with constant velocity in its inertial trajectory
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Moving Mirrors & the Black Body Spec
Particle spectrum produced by the Fulling-Davies effect (DCE)

We here consider a different aspect of the introduction of physical,
semitransparent mirrors

Consider a mirror of this sort, initially at rest, then accelerates for a
large (but finite) time, u0, along a trajectory v = 1

k (1 − e−ku)

(in light-like coords, k a frequency), and for u ≥ u0, is left moving
with constant velocity in its inertial trajectory

Calculate the radiation emitted by the mirror from its back (right) side

As is well-known, a perfect mirror that follows this kind of trajectory
produces a thermal emission of scalar massless particles obeying
Bose-Einstein statistics:
for 1 ≪ ω′/k ≪ eku0 and 1 ≪ ω′/ω ≪ eku0 , one has

∣∣∣βR,R
ω,ω′

∣∣∣
2

≡
∣∣∣(φout

ω,R
∗
; φin

ω′,R)
∣∣∣
2 ∼= 1

2πω′k

(
e2πω/k − 1

)−1
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Partially reflecting mirror: to obtain the radiation on the rhs of

mirror we need calculate the Bogoliubov coefficient

βR,L
ω,ω′ ≡ (φout

ω,R
∗

;φin
ω′,L)

∗
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Partially reflecting mirror: to obtain the radiation on the rhs of

mirror we need calculate the Bogoliubov coefficient

βR,L
ω,ω′ ≡ (φout

ω,R
∗

;φin
ω′,L)

∗

Obtain the ‘in’ modes on the rhs of the mirror when the

reflection and transmission coeffs are

r(w) =
−iα

ω + iα
, s(w) =

ω

ω + iα

with α ≥ 0, that is, when the Lagrangian density is

L =
1

2
[(∂tφ)2 − (∂xφ)2] − α

√
1 − ġ2(t)φ2δ(x − g(t))

being x = g(t) the trajectory in the (t, x) coordinates
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The Main Results
Some of them quite remarkable indeed

(for 1 ≪ ω′/k ≪ eku0 and 1 ≪ ω′/ω ≪ eku0)

In the perfectly reflecting case, i.e., when ω′ ≪ α, we obtain

∣∣∣βR,R
ω,ω′

∣∣∣
2

=
1

2πω′k
∼=

(
e2πω/k − 1

)
−1

,
∣∣∣βR,L

ω,ω′

∣∣∣
2 ∼= 0

that is, a thermal radiation of massless particles obeying

Bose-Einstein statistics arises
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Some of them quite remarkable indeed

(for 1 ≪ ω′/k ≪ eku0 and 1 ≪ ω′/ω ≪ eku0)

In the perfectly reflecting case, i.e., when ω′ ≪ α, we obtain

∣∣∣βR,R
ω,ω′

∣∣∣
2

=
1

2πω′k
∼=

(
e2πω/k − 1

)
−1

,
∣∣∣βR,L

ω,ω′

∣∣∣
2 ∼= 0

that is, a thermal radiation of massless particles obeying

Bose-Einstein statistics arises

In the perfectly transparent case, i.e., when α ∼= 0, we have

|βR,R
ω,ω′ |2 ∼= 0, |βR,L

ω,ω′ |2 ∼= 0

−→ no particle production
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The Main Results
Some of them quite remarkable indeed

(for 1 ≪ ω′/k ≪ eku0 and 1 ≪ ω′/ω ≪ eku0)

In the perfectly reflecting case, i.e., when ω′ ≪ α, we obtain

∣∣∣βR,R
ω,ω′

∣∣∣
2

=
1

2πω′k
∼=

(
e2πω/k − 1

)
−1

,
∣∣∣βR,L

ω,ω′

∣∣∣
2 ∼= 0

that is, a thermal radiation of massless particles obeying

Bose-Einstein statistics arises

In the perfectly transparent case, i.e., when α ∼= 0, we have

|βR,R
ω,ω′ |2 ∼= 0, |βR,L

ω,ω′ |2 ∼= 0

−→ no particle production

In the physically more realistic case of a partially transmitting

mirror (transparent to high enough frequencies, i.e., when

α ≪ ω′, what we obtain is
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∣∣∣βR,R
ω,ω′

∣∣∣
2 ∼= 1

2πωk

( α

ω′

)2 (
e2πω/k + 1

)−1

∣∣∣βR,L
ω,ω′

∣∣∣
2

∼ 1

ωω′
O

[( α

ω′

)2
]

And, since
∣∣∣βR,L

ω,ω′

∣∣∣ ≪
∣∣∣βR,R

ω,ω′

∣∣∣, we conclude quite surprisingly that a

semitransparent mirror emits a thermal radiation of scalar massless
particles obeying Fermi-Dirac statistics
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]

And, since
∣∣∣βR,L

ω,ω′

∣∣∣ ≪
∣∣∣βR,R

ω,ω′

∣∣∣, we conclude quite surprisingly that a

semitransparent mirror emits a thermal radiation of scalar massless
particles obeying Fermi-Dirac statistics

An additional calculation on a bidimensional fermionic model for
massless particles seems to show that the reverse change of
statistics may happen: the Fermi-Dirac statistics for the completely
reflecting case will turn into the Bose-Einstein statistics for the
partially reflecting mirror
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]

And, since
∣∣∣βR,L

ω,ω′

∣∣∣ ≪
∣∣∣βR,R

ω,ω′

∣∣∣, we conclude quite surprisingly that a

semitransparent mirror emits a thermal radiation of scalar massless
particles obeying Fermi-Dirac statistics

An additional calculation on a bidimensional fermionic model for
massless particles seems to show that the reverse change of
statistics may happen: the Fermi-Dirac statistics for the completely
reflecting case will turn into the Bose-Einstein statistics for the
partially reflecting mirror

The physical reason of the remarkable change of statistics that takes
place remains, as of now, a mystery. It might well find application in
other situations, including perhaps black hole physics
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In summary:
Physical (here semitransparent mirror) BC are much better suited
than perfect (hard, mathematical) BC in order to treat the divergences
appearing in QFTs with boundaries
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In summary:
Physical (here semitransparent mirror) BC are much better suited
than perfect (hard, mathematical) BC in order to treat the divergences
appearing in QFTs with boundaries
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Surprising!: the problem we addressed could be solved exactly, thus
successfully completing a challenging program initiated by Barton,
Calogeracos, and Nicolaevici. The results obtained are solid—do not
hang on perturbative expansions or approximations

The physical understanding of this remarkable change of statistics
remains, as of now, a mystery

It can find application in other situations, including perhaps
black hole physics
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This strongly suggests, in a fundamental context:

Einstein’s Eqs are to be viewed as EoS

Should, probably, not be taken as basic for quantizing gravity

C. Eling, R. Guedens, T. Jacobson [PRL2006]: extension to

polynomial f(R) gravity but as non-equilibrium thermodyn.

Also Erik Verlinde (personal discussions)
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Jacobson’s argument: basic thermodynamic relation

δQ = TδS

– entropy proport to variation of the horizon area: δS = η δA
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δS = δ (ηeA)

ηe is a function of the metric and its deriv’s to a given order

ηe = ηe

(
gab, Rcdef ,∇(l)Rpqrs

)

Case of f(R) gravities:

L = f(R,∇nR)
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Also the concept of an effective Newton constant for graviton

exchange (effective propagator)

1

8πGeff
= Epqrs

R ǫpqǫrs =
∂f

∂R
(gprgqs − gqrgps)ǫpqǫrs

=
∂f

∂R
=

ηe

2π
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=
∂f

∂R
=

ηe

2π

For these theories, the different polarizations of the gravitons

only enter in the definition of the effective Newton constant

through the metric itself

Final result, for f(R) gravities:

the local field equations can be thought of as an equation of

state of equilibrium thermodynamics (as in the GR case)
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