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Priors: In all cases we consider a fiducial LCDM modelPriors: In all cases we consider a fiducial LCDM model
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0.01 for Ω h2 and σ = 0.03 for Ω .0.01 for Ωmh
2 and σk = 0.03 for Ωk.0.01 for Ωmh and σk = 0.03 for Ωk.
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fitted well measurements of dL or dA but not direct measurements
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Figure 4. Comparison of an example model (red lines) with the ΛCDM (black lines).

models for the different datasets. Notice the stronger sensitivity of H(z) measurements (left) compared to dA or dL
measurements (right) to the dynamics of dark energy.

models for the different datasets.
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