Combined analysis of the integrated Sachs-Wolfe effect

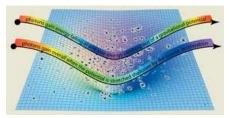
Tommaso Giannantonio

tommaso.giannantonio@astro.uni-bonn.de

In collaboration with:

R. Crittenden, R. Nichol, R. Scranton, Y.-S. Song, K. Koyama, H. Lampeitl

München, 9 October 2008



1 the integrated Sachs-Wolfe effect

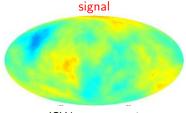
2 combined analysis of the ISW measurements

- Cosmological constraints and combination with other data
- applications on modified gravity theories

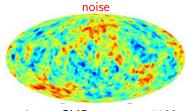
the integrated Sachs-Wolfe effect

• integrated SW: $\frac{\delta T}{T} = 2 \int_{\gamma} \dot{\Phi}[r(t), t] dt$ (Sachs & Wolfe '68)

$$\nabla^2 \Phi = 4\pi G a^2 \rho \delta \quad \rightarrow \quad \Phi \propto \frac{\delta}{a}$$

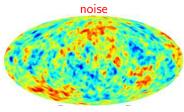

- no effect in matter dominated epoch: $\delta_m \propto a \Rightarrow \dot{\Phi} = 0$
- early ISW in transition from radiation epoch
- late ISW in transition to curvature or DE epoch

in absence of curvature, a measure of the late ISW is a measure of dark energy


Tommaso Giannantonio (AlfA, Bonn)

measuring the ISW

• the observed microwave sky is a superimposition of:


ISW map, z < 4

primary CMB map, z = 1100

measuring the ISW

primary CMB map, z = 1100

- we would like to measure the C_{l}^{TT}
 - ISW is small (10% of the total)
 - is affected by cosmic variance

a noise dominated, difficult measure

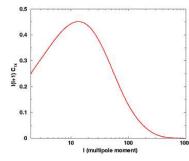
I (multipole moment)

the cross-correlation technique

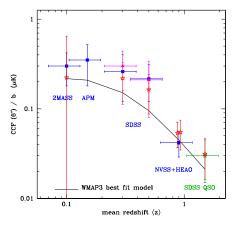
the ISW is small, but we can measure it:

- the ISW map is correlated with matter density through the gravitational potential
- the primary CMB is not because has been generated long before

cross-correlation CMB-matter can extract the late ISW (Crittenden & Turok '95)


the cross-correlation technique

the ISW is small, but we can measure it:


- the ISW map is correlated with matter density through the gravitational potential
- the primary CMB is not because has been generated long before

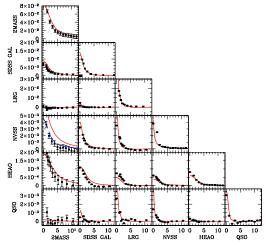
cross-correlation CMB-matter can extract the late ISW (Crittenden & Turok '95)

- we can measure the $C_I^{T\delta}$ of the cross-correlation
 - $\bullet\,$ they are $\neq 0$ only with dark energy
 - depend on DE parameters (w, c_s, ...)
 - $\bullet\,$ and on the survey dN/dz
- a linear, large scale effect
- we need wide and deep density maps
 - we assume linear bias b_g relating dark matter and galaxy densities

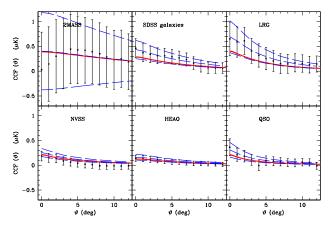
different procedures generally converge...

- real space: 2-pt function $c^{T\delta}(\vartheta)$ Boughn & Crittenden '04 , Fosalba & Gaztañaga '04 , Scranton et al. '04 , Fosalba et al. '04 , Nolta et al. '04 , Cabré et al. '06 , TG et al. '06 , **TG et al. '08**
- harmonic space: $C_{\ell}^{T\delta}$ Padmanabham et al. '04 , Afshordi et al. '04 , Rassat et al. '06 , Ho et al. '08
- wavelets needlets approach Vielva et al. '04 , Pietrobon et al. '06
- localised stacking method Granett et al. '08

we now know the covariance!

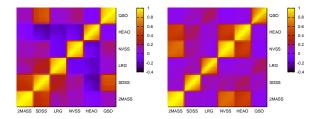

combined analysis of the ISW

(TG, R. Scranton, R. Crittenden, B. Nichol, S. Boughn & G. Richards '08)


- the catalogues
 - density: six galaxy catalogues at redshift 0 < z < 2 to measure the evolution of the ISW: 2MASS, SDSS dr6 main + LRGs + QSOs, NVSS, HEAO
 - temperature: the WMAP3/5 internal linear combination map, we checked frequency independence
 - \bullet data are pixelised on the sphere using the HEALPix scheme $_{\rm (Gorski)}$ with resolution $N_{\rm side}=64,$ pixel side of 0.9 deg
- the masks
 - surveys are not full sky: a geometry mask is needed
 - foregrounds masking the most contaminated areas
 - dust extinction, seeing, and negligible sky brightness and point sources for the data from the SDSS
 - the original masks for the others: excluding the galactic plane and areas around bright sources

the auto (AxA) and AxB correlations

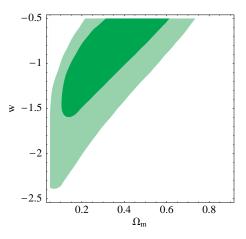
- in agreement with theory with the bias from literature
- errors with 1000 Monte Carlo realisations of all catalogues
- 2MASS-NVSS agrees if we cut the low z tail of NVSS dN/dz



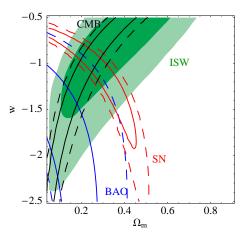
the cross-correlations

- ullet errors generated with 5000 random ${\cal T}$ and δ maps including the correlations
- fit obtained keeping fixed the shape of the theory
- 2MASS has SZ and very low significance

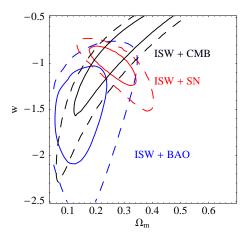
the total covariance



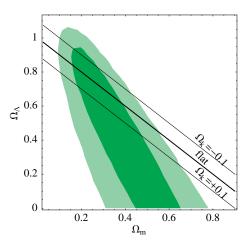
- we estimate the errors in three ways:
 - MC1: Monte Carlo correlations with random CMB maps, fixed galaxy maps
 - MC2: Monte Carlos with random CMB & random galaxies + Poisson noise
 - JK: Jack Knife errors, obtained excluding patches of the data.
 - it depends on the number and size of patches
- in the rest we choose the MC2 error since they are our best estimation
- the total significance is of 4.3σ fitting a single amplitude


we generally agree with previous results, and now we know their covariance

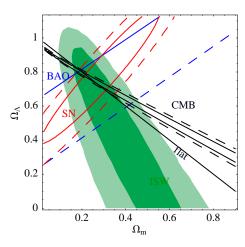
• a model with no dark energy is ruled out at 4σ


- a model with no dark energy is ruled out at 4σ
- then we study wCDM models with the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (this has a small effect)
- LCDM is a good fit

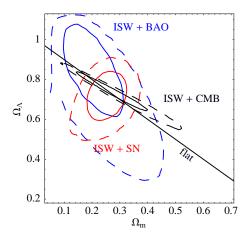
- a model with no dark energy is ruled out at 4σ
- then we study wCDM models with the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (this has a small effect)
- LCDM is a good fit
- we can intersect with other probes:
 - SNLS SNae
 - CMB shift parameter $R = 1.70 \pm 0.03$ by Wang et al.
 - BAO favours phantom $d_V(0.35)/d_V(0.2) = 1.812 \pm 0.060$ by Percival et al.



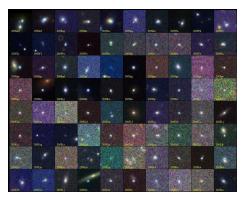
- a model with no dark energy is ruled out at 4σ
- then we study wCDM models with the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (this has a small effect)
- LCDM is a good fit
- we can intersect with other probes:
 - SNLS SNae
 - CMB shift parameter $R = 1.70 \pm 0.03$ by Wang et al.
 - BAO favours phantom $d_V(0.35)/d_V(0.2) = 1.812 \pm 0.060$ by Percival et al.
- the result of the intersections



• we can proceed in a similar way for curved LCDM models

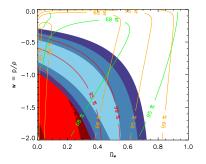

- we can proceed in a similar way for curved LCDM models
- we keep the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (small effect)
- flat is a good fit

- we can proceed in a similar way for curved LCDM models
- we keep the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (small effect)
- flat is a good fit
- we can intersect with other probes:
 - SNLS SNae
 - CMB shift parameter $R = 1.70 \pm 0.03$ by Wang et al.
 - BAO favours closed $d_V(0.35)/d_V(0.2) = 1.812 \pm 0.060$ by Percival et al.


- we can proceed in a similar way for curved LCDM models
- we keep the other parameters fixed to WMAP, and $\Omega_m h^2 = 0.128$ (small effect)
- flat is a good fit
- we can intersect with other probes:
 - SNLS SNae
 - CMB shift parameter $R = 1.70 \pm 0.03$ by Wang et al.
 - BAO favours closed $d_V(0.35)/d_V(0.2) = 1.812 \pm 0.060$ by Percival et al.
- the result of the intersections

combination with SDSS SNae (Lampeitl, TG, Nichol et al. in prep.)

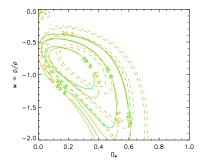
[see Bob Nichol's talk on Friday for more details]


• 102 SNae from the SDSS dr1 at 0.05 < z < 0.4 (Frieman et al. '08, Kessler et al. in prep.)

combination with SDSS SNae (Lampeitl, TG, Nichol et al. in prep.)

[see Bob Nichol's talk on Friday for more details]

- 102 SNae from the SDSS dr1 at 0.05 < z < 0.4 (Frieman et al. '08, Kessler et al. in prep.)
- combination of the SNae (blue) with:
 - growth of structure from 2dF (orange) Hawkins '03 ,
 - BAO (red) Percival '07 ,
 - the ISW (green) TG '08 only at low z

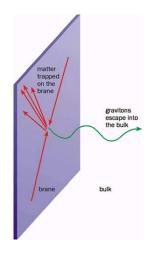

combination with SDSS SNae (Lampeitl, TG, Nichol et al. in prep.)

[see Bob Nichol's talk on Friday for more details]

- 102 SNae from the SDSS dr1 at 0.05 < z < 0.4 (Frieman et al. '08, Kessler et al. in prep.)
- combination of the SNae (blue) with:
 - growth of structure from 2dF (orange) Hawkins '03 ,
 - BAO (red) Percival '07 ,
 - the ISW (green) TG '08 only at low z

• SNae in tension with BAO; the intersection with ISW and GS gives tighter constraints:

 $w = -0.83 \pm 0.14$ (preliminary).



the DGP model of gravity (Dvali, Gabadadze, Porrati '00)

- dark energy can be seen as a modification of the Einstein equation or braneworlds
- DGP model: 4d brane in Minkowski 5d bulk
- background expansion: new Friedmann equation

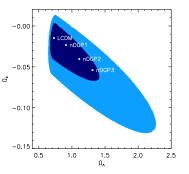
$$H^{2} \mp \frac{1}{r_{c}} \sqrt{H^{2} + \frac{K}{a^{2}}} = \frac{\kappa^{2}}{3}\rho + \frac{\Lambda}{3} - \frac{K}{a^{2}}$$

- minus sign \rightarrow self accelerating branch (accelerates today if $r_c \sim H_0^{-1}$) ruled out at 4σ by Fan et al. '08
- plus sign \to normal branch, nDGP has a tension of the brane Λ to achieve acceleration

the DGP model of gravity (Dvali, Gabadadze, Porrati '00)

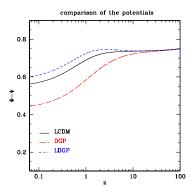
- dark energy can be seen as a modification of the Einstein equation or braneworlds
- DGP model: 4d brane in Minkowski 5d bulk
- background expansion: new Friedmann equation

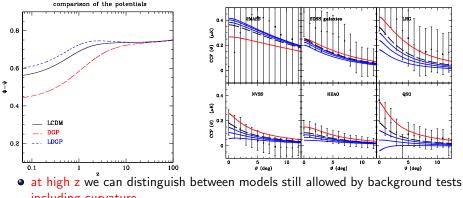
$$H^2 \mp \frac{1}{r_c} \sqrt{H^2 + \frac{K}{a^2}} = \frac{\kappa^2}{3} \rho + \frac{\Lambda}{3} - \frac{K}{a^2}$$


- minus sign \rightarrow self accelerating branch (accelerates today if $r_c \sim H_0^{-1}$) ruled out at 4σ by Fan et al. '08
- plus sign \to normal branch, nDGP has a tension of the brane Λ to achieve acceleration

background tests (SN, H₀, CMB shift)

nDGP still allowed with curvature


Tommaso Giannantonio (AlfA, Bonn)


the DGP ISW (TG, Y.-S. Song & K. Koyama '08)

- $\bullet \ different \ models \ of \ gravity \rightarrow different \ potentials \rightarrow different \ ISW \ ({\tt Lue \ et \ al.} \ '03)$
- $\bullet\,$ in the DGP the potentials decay earlier than in GR; in the nDGP later

the DGP ISW (TG, Y.-S. Song & K. Koyama '08)

• different models of gravity \rightarrow different potentials \rightarrow different ISW (Lue et al. '03) • in the DGP the potentials decay earlier than in GR; in the nDGP later

including curvature

ISW linear structure formation tests

(DGP favoured by this test); nDGP can be ruled out at high z

Tommaso Giannantonio (AlfA, Bonn)

conclusions

- the ISW is a useful tool to study dark energy
- has now been measured a number of times using the cross-correlation of WMAP with different density tracers up to $\bar{z} = 1.5$ with the QSO
- \bullet we have performed a full covariance analysis, obtaining consistent results for six datasets and the total significance is $\sim4.5\sigma$
- the result is consistent with LCDM and is complementary to other data sets (the CMB, SNae, BAO, ...)
- these data can constrain different dark energy and modified gravity models