Multidimensional Simulations of Type Ia Supernova Explosions:

Confronting Model Predictions with Observations

Wolfgang Hillebrandt MPI für Astrophysik Garching

Dark Energy Conference, Munich, October 7 - 11, 2008

In collaboration with

Friedrich Röpke (MPA), Martin Reinecke (MPA), Stuart Sim (MPA), Michael Fink (MPA), Rüdiger Pakmor (MPA), Paolo Mazzali (MPA & Obs. Padova), Jens Niemeyer (U. Würzburg), Wolfram Schmidt (U. Würzburg), Sergei Blinnikov (ITEP Moscow), Stan Woosley (UC Santa Cruz),

The promise of supernova cosmology:

Is Hope left in Pandora's box?

How "different" are SNe Ia?

Example: Early time spectra (court. Stephan Hachinger)

1983G, -0.5d (*1.2)

6500

7000

Comparing SNe Ia with ∆m15≈0.9 *const.) 1991T, -3.5d (*0.3) F_λ (log., 1999ee -1 4d 5000 7000 8000 4000 6000 9000 Wavelength [Å] Comparing SNe Ia with ∆m15≈1.35 2002er, -0.4d (*160) 1989B, 0.1d (*2)

Comparing SNe Ia with ∆m₁₅≈1.8

F_Å (log., *const.)

С

3500

4500

4000

5500

6000

5000

Wavelength [Å]

Example: Bolometric LCs and Ni-masses

(mostly RTN/ESC data)

(Court. M. Stritzinger;also: Stritzinger et al. 2006)

<u>Is evolution a problem?</u>

Or extiction?

Ask theory also!

The "standard" model of type Ia supernovae

The "standard" model of type Ia supernovae

White dwarf in a binary system

➢ Growing to M_{Chan} by mass transfer

Disrupted by a thermonuclear explosion

<u>Here, I will mainly discuss</u> <u>deflagration models!</u>

How does the model work?

Density ~ $10^9 - 10^{10} \text{ g/cm}$

Temperature: a few 10⁹ K

Radii: a few 1000 km

Explosion energy: Fusion C+C, C+O, $O+O \rightarrow "Fe"$

Laminar burning velocity: $U_L \sim 100 \text{ km/s} \ll U_S$

The physics of turbulent combustion

Everydays experience: Turbulence increases the burning velocity. > In a star: Reynoldsnumber ~ 10¹⁴! In the limit of strong turbulence: $U_{\rm R} \sim V_{\rm T}$! Physics of thermonuclear burning is very similar to premixed chemical flames.

Numerical implementation (I)

Large Eddy Simulation (LES) approach Subgrid-scale turbulence model (Niemeyer & WH, 1995; Schmidt et al., 2005, 2006)

Numerical implementation (II)

seen from scales of WD: flame is a discontinuity between fuel and ash; flame propagation via Level Set Method:

associate flame front with

 $\Gamma = \{ \vec{r} \mid G(\vec{r}, t) = 0 \}$

distance function G, G<0 in fuel,
G>0 in ashes,
equation of motion:

$$G=0$$

M. Reinecke

$$\frac{\partial G}{\partial t} = (\mathbf{v}_{\mathbf{u}}\mathbf{n} + s_{\mathrm{T}}) |\nabla G|$$

• simplified description of burning: everything behind G=0 isosurface is nuclear ash; depending on fuel density at burning: intermediate mass elements ("Mg") or NSE (mixture of "Ni" and ⁴He)

<u>Note:</u>

➤ This has become the preferred method in many recent technical applications involving premixed turbulent chemical flames! (e.g., Smiljanowski et al. 1997, Peters 2000, Angelberger et al. 2002, Kraus 2007,)

> It is free of adjustable parameters once the subgrid-scale model has been fixed!

<u>A few 'generic' results</u> ('low-resolution' 3D parameter study)

<u>Nuclear Abundances</u> (Travaglio et al. 2004, also Röpke et al. 2006)

Effects of metallicity

(Travaglio et al. 2005,Röpke et al. 2006)(also Timmes et al. 2003)

Ignition conditions: a reason for diversity?

"Multi-spot"

Röpke et al. (2005)

<u>A high-resolution model ('the SNOB run')</u>

- "4π"
- ▶ 1024³ grid
- > initial resolution near the center ≈ 800 m
 - moving grid
- Local & dynamical sgs-model
- ~ 1,000 h on
 512 processors,
 IBM/Power4, at RZG

(Röpke et al., 2007)

Some important results

 $E_{kin} = 8.1 \cdot 10^{50} \text{ erg} (= 0.81 \text{ B})$ \succ Iron-group nuclei: 0.61 M_{sun} (~ 0.33 M_{sun} ⁵⁶Ni) Intermediate-mass nuclei: 0.43 M_{sun} (from hydro) Unburnt C+O: 0.37 M_{sun} (from hydro) (less than 0.08 M_{sun} at v<8000 km/s) \succ Vmax \approx 17,000 km/s

Good agreement with observations of some "normal" SNe Ia!

Röpke et al. (2007)

Example 1: Abundances

.... and "abundance tomography"

.... and "abundance tomography"

Röpke et al. (2007)

Example 2: Bolometric light curve

<u>Note:</u> <u>These are</u> <u>predictions</u>, <u>not fits!</u>

Röpke et al. (2007)

Changing physical parameters: ignition density

- ► "4π"
- \succ 640³ grid
- ➢ initial resolution near the center ≈ 1000m
- moving grid
- Local & dynamical sgs-model
- ~ 200,000 CPUh on IBM/Power5, at EPCC

Röpke et al. (in preparation)

Preliminary results:

- $E_{kin} = 7.7 \cdot 10^{50} \text{ erg} (= 0.77 \text{ B})$
- ► Iron-group nuclei: 0.55 M_{sun} (mostly ⁵⁶Ni !)
- ➢ Intermediate-mass nuclei: 0.47 M_{sun}
- ► Unburnt C+O: 0.38 M_{sun}
- \blacktriangleright Vmax \approx 16,000 km/s

Lower ignition density makes a supernova less energetic, but brighter!

Röpke et al. (in preparation)

Summary and conclusions

- "Parameter-free" thermonuclear models of SNe Ia, based on (Chandrasekhar-mass) white dwarfs explode with about the right energy.
- They allow to predict light curves and spectra, depending on physical parameters!
- ≻ The diversity may be due to:
 → Ignition conditions (or other physical parameters).
 - \rightarrow Or deflagration-to-detonation transitions?

(Gamezo et al. 2004, 2005; Röpke & Niemeyer 2006, Woosley 2007, Röpke 2007)

The 'Zorro' diagramme

Pure deflagrations!

Mazzali et al. (2007)

Deflagration-to-detonation transitions?

High-amplitude turbulent velocity fluctuations $(\sim 10^8 \text{ cm s}^{-1})$ occur at the onset of distributed burning regime on sufficiently large area of flame (~10¹² cm²)

(Röpke 2007)

More questions and challenges

Ignition conditions: How do WDs reach the critical mass? Center/off-center ignition? One/multiple 'points'?

Off-center explosions

Röpke et al. (2006)(also Jordan et al., 2008;Meakin et al., 2008;Townsley et al., 2007; ...)

.... and their predictions

<u>Note:</u> This is a model that has ~ $0.4 M_{sun}$ of Ni only!

Sim et al. (2007)

More questions and challenges (cont.)

The progenitor question: Single degenerates? Double degenerates? Sub-M_{ch} explosions?

SN 2006X (Patat et al. 2007)

Should one see the hydrogen?

<u>No, not necessarily !</u>

(Pakmor et al., 2008)

A few remarks on sub-Chandra double detonations

(Fink et al., 2007)

>The He-triggered double detonation is a robust explosion mechanism, provided one can accumulate ~ $0.1 M_{sum}$ of He. \succ These explosions would be bright (≥ 0.4 M_{sum} of Ni), but the velocity too high: they would not look like any of the observed SNe Ia.

More questions and challenges (cont.)

New generation of 'full-star' models: Light curves? Spectra? Luminosity calibration?

Key question for supernova cosmology:

There are potential sources of systematic errors.

But: they can be controlled by better models.

Hope is left in Pandora's box!