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“minimalist” approach to DE

Angular Scale
0.5°

LCDM is N
the best model

= test this against data I
®m let Quantum Gravity explain why

'OVaC - (10_3 eV)4 << pnew physics (> 1T€V) *

m focuson
* the best tests for w=-1
* the role of theoretical assumptions
e.g. w(z) parametrizations,
curvature=0



... but we can do more with the data:

Alternatives to LCDM:

within General Relativity

m  Dynamical DE (quintessence, interacting DE-CDM,...)

m  Effective 'Dark Energy’ via nonlinear effects of
structure formation?

modify GR on large scales (“"dark gravity”)
m  4D: scalar-(vector)-tensor theories [simplest = f(R)]
O higher-D: braneworld models [simplest = DGP]



NB — all these alternatives require that the

vacuum energy does not gravitate:
— they do not address the vacuum energy problem

Dark Energy dynamics

G, =8nGT,, +82GT jjrk
dark . - :
T, =time -varying DE field

74% Dark Energy

Modified Gravity dynamics
G, +G3* =84GT,,

G ®* = new gravity DOF T

y7A% L ek

to induce accelerati on




Modified gravity from braneworlds

® hew massive graviton modes
= hew effects from higher-D fields and other branes
= could these dominate at low energies?

our brane

Possibilities

* ‘bulk’ fields as effective
DE on the brane

extra dimension

(eg ekpyrotic/ cyclic)
shadow

* no bulk fields - effective
4D gravity on the brane
modified on large scales

(eg DGP)

brane

gravity
+ dilaton,

form fields...




DGP — the simplest example

167Z-G j d 5 W R(5) T rC J‘brane d 4XH R

(Dvali, Gabadadze, Porrati 2000 — and Deffayet 2001)
* DGP was NOT constructed to solve the DE problem

* NO free functions, 1 parameter - same as LCDM
GS

Py Crossover scale
Weak field static regime brane
1 gravity
r<<r,=>®«= — 4D leakage:
' gravity
r>>r = ® o iz — 5D fommmme gl:atnheeis
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weaker




DGP self-acceleration

late time: p, > 0= H — 1 de Sitter

r

C

early time : H2+£2>>i2:> H2+£2z like GR
a

C

early universe — recover GR H(z): 4D gravity dominates

late universe - acceleration without DE: 5D gravity dominates
— gravity “leaks” off the brane
— therefore gravity on the brane weakens

Passes the solar system test: since DGP— GR on small scales
The background is very simple — like LCDM



Modified
Friedmann
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(RM, Majerotto 2006)



Tests of the

background
expansion NN YEVAY ¢
history WP AL e

. . oscillations

Tension between
SNe, BAO and
CMB shift

DGP struggles to

fit the data

(RM, Majerotto 2006)

Unlike LCDM...






AN open DGP
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(Song, Hu, Sawicki 2007)



Structure formation in DGP
ds® = —(1+2¥)dt* +a(t)* (1+2®)dx’

Quasi-static approximation to 5D perturbations gives
subhorizon perturbations on the brane:

0.4 =

Like Brans-Dicke with ;
Wgp = E(ﬂ_1)< 0

(Koyama, RM 2006)
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Yer =~ 0.55+0.05[1+w(z =1)]

Voee ~ 0.68

f

— Q7

ad hoc 4D treatment
of perturbations gives
incorrect results —
violates 4D Bianchi

identity

DE model with same
expansion history

(Koyama, RM 2006)

Very strong suppression of growth from 5D effects —
This could violate observational constraints ...
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Growth factor
data not yet
accurate enough

O

Need to look at
the CMB -

— - — DM+DE Time-Dependent Coupling
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(Guzzo et al 2008)



Perturbations on all scales:
5D numerical solution

5D metric perturbations described by
the 5D "master variable”:

(Cardoso, Koyama et al 2008)
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Results:

density perturbations

= .
& 1 — quasi-stafic approximation .
= 0771 < k=10.0005hMpec* "

- . —]

2 1 ° k=001hMpc \

o 0.6 h"




Results: metric perturbations

— quasi-static approximation

ds® = —(1+ Z‘P)d'[2 + 63 . k= 0.0005hMpc!

1 « k=0001hMpc™
a’(1+2d)dx*ff ' k= 0.01 hMpc ™

e B =3 et =pel
péo®” - aE :
] gpoaps 88 - oS VO DM
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=0in GR

= dark — quasi-static approximation
anisotropic 1 - k=00005hMpc!

stress in DGP 1 ¢ k=0.002hMpc '
0.5 k = 0.01 hMpc ™

0.4

determines
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CMB: ISW

Steeper O 7000
implies el
stronger ISW -

- - —ACDM
than LCDM — with curvature

(Fang, Wang, Hu et al 2008)

(also: Song, Sawicki, Hu 2007)

QCDM = DE with the same expansion history as DGP
With geometric data: DGP is a poorer fit than LCDM at ~5 0
(large-scale CMB has 30%b contribution to this conclusion)



DGP seriously challenged

m DGP — simplest MG model from braneworlds

— probably the simplest MG model of all

— no free functions — same as LCDM
= But it is seriously challenged by data:

— both geometric and structure-formation
= Key problem = the scalar degree of freedom:

DGP like Brans-Dicke with o,, <0 on
subhorizon scales

This leads to drastic suppression of growth
Furthermore: @,, <0 indicates a ghost: f
confirmed by detailed analysis
The ghost makes the quantum vacuum unstable




DGP lessons

= Despite the challenge from data and the ghost —
DGP is a key example of how to combine
geometric and structure data to test GR

= Can we avoid the crisis of data and the ghost?
s Ghost-free self-accelerating models:
* we must go to higher dimensions
* up to now, no ghost-free cosmological model
* s0 we cannot yet test against observations

We can find a 5D braneworld cosmology with no

ghost problem if we give up self-acceleration — the
‘normal’ DGP model.

5D gravity screens A\ and gives w<-1 ...



DGP ‘normal’ branch

Minkowski
_ i J+ .
Different embedding of the ﬁ' Loa

brane in the bulk gives
another branch:

 No self-acceleration: need DE
« No ghost (@ >0)

: K
early time: H*+—>> == H’+—~
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Gravity leakage at late times screens A\

- and gives effective ‘phantom’ behaviour:

ppe c—H>0 = w,.<-1

But without any phantom pathologies.
Since - there is no 'big rip’ singularity.

Dimensionless modified Friedmann:




Flat nDGP — geometric data

best fit is an
LCDM model

(Lazkoz, RM, Majerotto 2006)




Curved nDGP — geometric data

For significant screening and phantom behaviour —
we need a curved model

Best fit is a closed model

(Giannantonio, Song, Koyama 2008)




Perturbations

— quasi-static approximation
k = 0.0005 h Mpe™
s k=0.002hMpc~!
k= 0.01 hMpc™!

Quasi-static
subhorizon
approximation
and numerical
solutions are
found by the

growth factor A(a)/a

. . . . &b
— quasl-static approximation ¢34

k = 0.0005 h Mpc ™!

Salllc approach o k=10.002hMpc~’ o
as in DGP k = 0.01 R Mpe™? s

rc > I

How does nDGP
fit to CMB?

Ongoing work

— guasi-static approximation
k = 0.0005 h Mpc ™!

] ° k=0.002hMpc™!
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(Cardoso, Koyama et al 2008)
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