Modified gravity from braneworlds

Leopoldina DE Munich October 2008

Roy Maartens ICG Portsmouth

"minimalist" approach to DE

LCDM is the best model

- test this against data
- let Quantum Gravity explain why

$$\rho_{\rm vac} = (10^{-3} \, {\rm eV})^4 << \rho_{\rm new physics} (> 1 \, {\rm TeV})^4$$

focus on

- * the best tests for w=-1
- * the role of theoretical assumptions e.g. w(z) parametrizations, curvature=0

... but we can do more with the data: We can test alternatives and test GR

Alternatives to LCDM: within General Relativity

- Dynamical DE (quintessence, interacting DE-CDM,...)
- Effective 'Dark Energy' via nonlinear effects of structure formation?
- modify GR on large scales ("dark gravity")
- 4D: scalar-(vector)-tensor theories [simplest = f(R)]
- higher-D: braneworld models [simplest = DGP]

NB – all these alternatives require that the vacuum energy does not gravitate: $\rho_{vac} \equiv 0$ – they do not address the vacuum energy problem Dark Energy dynamics

$$G_{\mu\nu} = 8\pi G T_{\mu\nu} + 8\pi G T_{\mu\nu}^{\text{dark}}$$
$$T_{\mu\nu}^{\text{dark}} = \text{time - varying DE field}$$
$$w = \frac{p_{\text{DE}}}{\rho_{\text{DE}}} < -\frac{1}{3}$$

Modified Gravity dynamics

$$G_{\mu\nu} + G_{\mu\nu}^{\text{dark}} = 8\pi G T_{\mu\nu}$$

 $G_{\mu\nu}^{\text{dark}} = \text{new gravity DOF}$
to induce acceleration

Modified gravity from braneworlds

- new massive graviton modes
- new effects from higher-D fields and other branes
- could these dominate at low energies?

- * `bulk' fields as effective DE on the brane
- (eg ekpyrotic/ cyclic)
- * no bulk fields effective 4D gravity on the brane modified on large scales
- (eg DGP)

DGP – the simplest example

$$S = \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g^{(5)}} R^{(5)} + \frac{r_c}{8\pi G_5} \int_{\text{brane}} d^4 x \sqrt{-g} R$$

(Dvali, Gabadadze, Porrati 2000 – and Deffayet 2001)

- * DGP was NOT constructed to solve the DE problem
- * NO free functions, 1 parameter same as LCDM

 $r_c = \frac{G_5}{2G}$ c

 $\frac{O_5}{2G}$ crossover scale

Weak field static regime

$$r \ll r_c \Rightarrow \Phi \propto \frac{1}{r} \rightarrow 4D$$

 $r \gg r_c \Rightarrow \Phi \propto \frac{1}{r^2} \rightarrow 5D$

DGP self-acceleration

$$H^{2} + \frac{K}{a^{2}} - \frac{1}{r_{c}}\sqrt{H^{2} + \frac{K}{a^{2}}} = \frac{8\pi G}{3}\rho_{m}$$

late time : $\rho_{m} \rightarrow 0 \Rightarrow H \rightarrow \frac{1}{r_{c}}$
early time : $H^{2} + \frac{K}{a^{2}} \gg \frac{1}{r_{c}^{2}} \Rightarrow H^{2} + \frac{K}{a^{2}} \approx \frac{8\pi G}{3}\rho_{m}$ like GR

early universe – recover GR H(z): 4D gravity dominates late universe – acceleration without DE: 5D gravity dominates – gravity "leaks" off the brane

- therefore gravity on the brane weakens

$$H^{2} + \frac{K}{a^{2}} - \frac{1}{r_{c}}\sqrt{H^{2} + \frac{K}{a^{2}}} = \frac{8\pi G}{3}\rho_{m}$$

(RM, Majerotto 2006)

Modified Friedmann

$$1 = \left(\sqrt{\Omega_{r_c}} + \sqrt{\Omega_{r_c} + \Omega_m}\right)^2 + \Omega_K$$
$$\Omega_{r_c} = \frac{H_0^{-2}}{4r_c^2}$$

Tests of the background expansion history

Tension between SNe, BAO and CMB shift DGP struggles to fit the data

(RM, Majerotto 2006)

Unlike LCDM...

DGP flat model in trouble

$$H^2 = \frac{8\pi G}{3}\rho_m + \frac{H}{r_c}$$

$$\rho_{DE} = \frac{3}{8\pi G} \frac{H}{r_c} \qquad w_{DE} = -\frac{1}{1 + \Omega_m(c)}$$

Open model is better

(Song, Hu, Sawicki 2007)

Structure formation in DGP

$$ds^{2} = -(1+2\Psi)dt^{2} + a(t)^{2}(1+2\Phi)d\vec{x}^{2}$$

Quasi-static approximation to 5D perturbations gives subhorizon perturbations on the brane:

$$\frac{k^2}{a^2} \Phi = 4\pi G \left(1 - \frac{1}{3\beta} \right) \rho \delta,$$
$$\frac{k^2}{a^2} \Psi = -4\pi G \left(1 + \frac{1}{3\beta} \right) \rho \delta,$$

$$\beta = 1 - 2Hr_c \left(1 + \frac{\dot{H}}{3H^2} \right)$$

a

Like Brans-Dicke with

$$\omega_{BD} = \frac{3}{2} (\beta - 1) < 0$$

(Koyama, RM 2006)

Very strong suppression of growth from 5D effects – $\frac{w_{DE}}{W_{DE}}$ and $\frac{\Psi}{W_{DE}}$ This could violate observational constraints ...

Growth factor data not yet accurate enough

Need to look at the CMB and this requires superhorizon perturbations

(Guzzo et al 2008)

Perturbations on all scales: 5D numerical solution

5D metric perturbations described by the 5D "master variable":

$$\frac{\partial^2 \Omega}{\partial u \partial v} - \frac{3}{2v} \frac{\partial \Omega}{\partial u} + \frac{k^2 r_c^2}{4v^2} \Omega = 0$$

Density perturbations on the brane

$$\ddot{\Delta} + 2H\dot{\Delta} - 4\pi G\rho F_1 \Delta = F_2 \frac{k^4}{a^5} \Omega_{\text{brane}}$$

where

$$F_{1} = \frac{2r_{c}(\dot{H} - H^{2} + 2r_{c}H^{3})}{H(2r_{c}H - 1)^{2}}$$
$$F_{2} = -\frac{(r_{c}\dot{H} - H + 2r_{c}H^{2})}{3H(2r_{c}H - 1)^{2}}$$

(Cardoso, Koyama et al 2008)

Results: density perturbations

Results: metric perturbations

$$ds^{2} = -(1+2\Psi)dt^{2} + a^{2}(1+2\Phi)d\vec{x}$$
$$\Phi_{\pm} = \frac{1}{2}(\Phi \pm \Psi)$$

Φ₊ =0 in GR = dark anisotropic stress in DGP

 Φ_{-} determines ISW, lensing

CMB: ISW

Steeper Φ_{-} **implies stronger ISW than LCDM**

(Fang, Wang, Hu et al 2008) (also: Song, Sawicki, Hu 2007)

QCDM = DE with the same expansion history as DGP With geometric data: DGP is a poorer fit than LCDM at ~5 σ (large-scale CMB has 30% contribution to this conclusion)

DGP seriously challenged

DGP – simplest MG model from braneworlds probably the simplest MG model of all – no free functions – same as LCDM But it is seriously challenged by data: both geometric and structure-formation Key problem = the scalar degree of freedom: **DGP** like Brans-Dicke with $\omega_{RD} < 0$ on subhorizon scales This leads to drastic suppression of growth Furthermore: $\omega_{RD} < 0$ indicates a ghost: confirmed by detailed analysis The ghost makes the quantum vacuum unstable

DGP lessons

Despite the challenge from data and the ghost – DGP is a key example of how to combine geometric and structure data to test GR
Can we avoid the crisis of data and the ghost?
Ghost-free self-accelerating models:
* we must go to higher dimensions
* up to now, no ghost-free cosmological model
* so we cannot yet test against observations

We can find a 5D braneworld cosmology with no ghost problem if we give up self-acceleration – the 'normal' DGP model. 5D gravity screens ∧ and gives w<-1...

DGP 'normal' branch

Different embedding of the brane in the bulk gives another branch:

- No self-acceleration: need DE
- No ghost $(\omega_{BD} > 0)$

DGP \longrightarrow **nDGP**: $r_c \longrightarrow -r_c$ and $\rho_m \longrightarrow \rho_m + \Lambda / 8\pi G$

$$H^{2} + \frac{K}{a^{2}} + \frac{1}{r_{c}} \sqrt{H^{2} + \frac{K}{a^{2}}} = \frac{8\pi G}{3} \rho_{m} + \frac{\Lambda}{3}$$

late time : $\rho_{m} \rightarrow 0 \Rightarrow H \rightarrow \sqrt{\frac{\Lambda}{3} + \frac{1}{4r_{c}^{2}}} - \frac{1}{2r_{c}} \left(< \frac{\Lambda}{3} \right)$
early time : $H^{2} + \frac{K}{a^{2}} >> \frac{1}{r_{c}^{2}} \Rightarrow H^{2} + \frac{K}{a^{2}} \approx \frac{8\pi G}{3} \rho_{m} + \frac{\Lambda}{3}$

Gravity leakage at late times screens Λ

$$\rho_{DE} = \frac{1}{8\pi G} \left(\Lambda - 3\frac{H}{r_c} \right) < \frac{\Lambda}{8\pi G}$$

- and gives effective 'phantom' behaviour:

$$\dot{\rho}_{DE} \propto -\dot{H} > 0 \implies w_{DE} < -1$$

But without any phantom pathologies. Since $\frac{\dot{H} < 0}{H}$ there is no 'big rip' singularity.

Dimensionless modified Friedmann:

$$1 = \Omega_K + \left(\sqrt{\Omega_m + \Omega_\Lambda + \Omega_{r_c}} - \sqrt{\Omega_{r_c}}\right)^2$$

Flat nDGP – geometric data

best fit is an LCDM model

(Lazkoz, RM, Majerotto 2006)

Curved nDGP – geometric data

For significant screening and phantom behaviour – we need a curved model Best fit is a closed model

(Giannantonio, Song, Koyama 2008)

Perturbations

Quasi-static subhorizon approximation and numerical solutions are found by the same approach as in DGP $r_c \rightarrow -r_c$

How does nDGP fit to CMB? Ongoing work

(Cardoso, Koyama et al 2008)

