

Rees-Sciama -- Weak Lensing Correlation

~ Non-linear study and the implications for DARK ENERGY ~

Atsushi J. NISHIZAWA (National Astronomical Observatory Japan)

Collaborate with Eiichiro KOMATSU(U. Texas, Austin), Naoki YOSHIDA, Ryuichi TAKAHASHI, Naoshi SUGIYAMA (Nagoya U.) 3rd Biennial Leopoldina Conference on Dark Energy

ISW and Rees-Sciama effect

z < O(1)

z~1100

Accelerating expansion due to dark energy

 $\frac{\partial}{\partial r} \left[\Psi(\hat{n}r,r) - \Phi(\hat{n}r,r) \right] dr$

3rd Biennial Leopoldina Conference on Dark Energy

ISW/RS in the CMB spectra

Temperature fluctuation

angular scale101 [arcmin]

3rd Biennial Leopoldina Conference on Dark Energy

 $|(|+I)C_1/2\pi$

2 points statistics : Cross-Correlation of Angular Power Spectrum -CCAPS-

CMB temp. fluctuations

Projected density of galaxies

$$C(\theta) = \left\langle \frac{\Delta T(\hat{n})}{T} \delta(\hat{n} + \hat{\theta}) \right\rangle = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} C_l P_l[\cos(\theta)]$$

$$C_l \equiv \left\langle a_{lm}^T a_{lm}^{\delta*} \right\rangle \qquad X(\hat{n}) = \sum_{l,m} a_{lm}^X Y_{lm}(\hat{n})$$

CCAPS
3rd Biennial Leopoldina Conference on Dark Energy

How do we treat the NLity?

Higher Order PT (including, renorm., resum., etc.) **O** : Easy to separate NLity ; extension of linear PT. \times : break down at high-k (small scale). Makino+ 1992, Crosse+ 2006, Matsubara 2008, Taruya+ 2008 etc. Halo model **O** : Physics is easy to understand. × : inconsistent with N-body at int'm. scale and high z. Seljak 2000, White+ 2001, Sheth+ 2001, 2002, Ma+ 2002 etc. Fitting formulae for matter power spec. **O** : implementation is easy. Good agreement with sim. \times : physical interpretation is not straightforward. Peacock+ 1996, Smith+ 2003 N-body simulation O: Minimal assumptions are required. × : Time consuming. Hard to include baryon. Springel+ 2005 3rd Biennial Leopoldina Conference on Dark Energy $\sim Basic Equations \sim$ Angular power spec. RS - WL $C_{l}^{\Phi'-\kappa} = 2l^{2} \int dz_{s} n(z_{s}) \int_{0}^{rs} dr \, \frac{r_{s} - r}{r^{3} r_{s}} P_{\Phi\Phi'}(k,r) |_{k=l/r}$

Poisson eq. with power spec. $(\Phi \to \delta)$ $P_{\Phi\Phi'}(k,a) = \left(\frac{3\Omega_m H_0^2}{2ak^2}\right)^2 \left[P_{\delta\delta'}(k,a) - HP_{\delta\delta}(k,a)\right]$

Continuity eq. $(\delta' \rightarrow \mathbf{m}\mathbf{v})$ $i\delta'(k) = kv(k)\mu + \int \frac{d^3\hat{q}}{(2\pi)^3} \delta(\hat{k} - \hat{q})kv(\hat{q})\mu \frac{\dot{k}\cdot\hat{q}}{q^2}$

δ' is equivalent to the div. of momentum

3rd Biennial Leopoldina Conference on Dark Energy

RS with 3rd order standard PT Pas $P_{\delta\delta}(k,a) = D^{2}(a)P_{\delta\delta}^{11}(k) + D^{4}(a)\left[P_{\delta\delta}^{22}(k) + 2P_{\delta\delta}^{13}(k)\right]$ **P** $_{\delta\delta'}$ (two prescriptions) ensemble average and time derivative can commute each other $P_{\delta\delta'}(k,a) = \frac{1}{2} \frac{\partial}{\partial r} P_{\delta\delta}(k,a)$

 $P_{\delta\delta'}(k,a) = DD'P_{\delta\delta}^{11}(k) + D^{3}D'[P_{\theta\delta}^{13}(k) + P_{\theta\delta}^{31}(k) + P_{\theta\delta}^{22}(k) + \int \frac{d^{3}\hat{q}}{(2\pi)^{3}} \left\{ B_{\delta\theta\delta}^{112}(\hat{k},\hat{q}) + B_{\delta\theta\delta}^{121}(\hat{k},\hat{q}) + B_{\delta\theta\delta}^{211}(\hat{k},\hat{q}) \right\} \frac{k'\cdot\hat{q}}{q^{2}}]$ using cont. eq.

Cont. eq. is used in Halo model (Sheth & Cooray 2002) 3rd Biennial Leopoldina Conference on Dark Energy $\langle \Phi \Phi' \rangle$ cross correlation

Impact of *w* on $<\Phi\Phi'>$

 $D^{2}(f-1)(1+z)^{2}$ (linear PT) Goto zero @ $\Omega_{\Lambda}=0$

 $D^{4}(2f-1)H(1+z)^{2}$ (3PT) NL part Goto zero @ $\Omega_{\Lambda} \sim 0.3$ Current Constraints from ISW Correlating multicolor objects with WMAP(3yr) (Xray(HEAO), radio(NVSS), opt(SDSS:main,LRG,QSO), IR(2MASS)

cosmological constant still survives

3rd Biennial Leopoldina Conference on Dark Energy

Detection of Φ'-κ

l max

 $l = l \min$

 $\sum C_l^X Cov^{-1}C_l^X$

 $Cov = \frac{C_{l}^{X} C_{l}^{X} + (C_{l}^{CMB} + N_{l}^{CMB})(C_{l}^{\kappa} + N_{l}^{\kappa})}{f_{sky}(2l+1)}$

lmax

3rd Biennial Leopoldina Conference on Dark Energy

Fisher forecast for $\Phi'-\kappa$ **correlation**

 $\Omega_M + \Omega_\Lambda = 1$

Energy

Conclusion

■ We focus on the Cross-correlation btwn ISW/RS and WL to isolate ISW/RS effect from primary CMB temp. fluctuations.

■ We compare 4 calculi of NL RS-WL correlation, 3PT, halo model, Smith's fitting and simulation. Fitting and N-body agree very well.

Linear theory is widely used for the estimation of DE via ISW, however the NLity appears at *I*>300 we should consider about NLity for future high resolution observation. (I<2000@Planck, I<10⁴@ACT)
 ISW/RS-WL correlation has a zero point crossing scale ,*I*~800 at which the Hubble expansion balances with gravitational collapse.
 It is true that with alone, the DE constraint from ISW/RS-WL correlation is not so stringent while it's worth noting that the orientation of degeneracy btwn Ω_Λ and *w* differs from that via BAO/SNe.

■ The systematic error from photo-z is also important for WL.