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Future satellite missions such as GAIA will achieve astrometry measurements 
with an accuracy of about 10 µas (microarcseconds) for bright sources; other 
satellite proposals aim at 1 µas. We show in this paper that such refined 
measurements allow us to detect large-scale deviations from isotropy through 
real-time observations of changes in the angular separation between sources at 
cosmic distances. We also show that this cosmic parallax effect is a powerful 
consistency test of Friedmann-Robertson-Walker metric and may set very 
strong constraints on alternative anisotropic models like Lemaître-Tolman-
Bondi cosmologies with off-center observers.
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Conclusions:
 Parallax effects, i.e. the apparent change in position of an object relative to the 

observer, are among the simplest and historically more important method to 
measure astronomical distances;
 The cosmic parallax of quasars and other distance sources in a LTB model is 

withing observable reach of some planned near-future mission such as GAIA;
 Cosmic parallax is a tool to measure cosmic anisotropy, and as such can 

distinguish FRW from other metrics as well, such as some Bianchi ones.
 In an off-center LTB model, cosmic parallax can be an 1+ order of magnitude 

better probe of off-center distance than the current best: the CMB dipole [1];
 Cosmic parallax avoids 2 intrinsic limitations of the CMB dipole effect:
1. It cannot be completely countered by the observer's own peculiar velocity;
2. Limitation by cosmic variance.
 Combined with a measurement of the time-drift of redshift [3], cosmic parallax 

can in principle fully reconstruct the 3D cosmic flow of distant sources.

Figure 1: Overview, notation and conven-
tions. Note that for clarity purposes we 
assumed here that the points C; O; a1; b1 
all lie on the same plane. By symmetry, 
points a2; b2 remain on this plane as well. 
Comoving coordinates r and r0 correspond 
to physical coordinates X and X0.

FRW-Like estimates 
for pair of sources at 
(i) the same redshift 

and (ii) same position 
in the sky.

Figure 2: Δγ for three sources at the same 
shell, at z = 3, for both models I (full lines) 
and II (dashed), and the FRW-like 
estimate (dotted). The dark, red lines 
correspond to a separation Δθ of 3o, while 
the light, blue lines represent a separation 
of 1o. As expected, Δγ is linear in Δθ.

Figure 3: Same as  Figure 2  but for Δθ =  0 
and redshift pairs {3, 3.2} (lighter, blue 
lines) and {3, 4} (darker, red lines).
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Figure 4: Time-drift of redshift in 
ΛCDM (upper, blue curve) and in 
both LTB models (lower, super-
imposed curves), for a time interval 
of 10 years. The drift is much more 
proeminent  in an LTB model [4].
The angle dependence of δz in ξ  is 
only marginal, so the effect is almost 
isotropical. Note the insensitivity to 
the specifics of the LTB model.
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The general 
LTB metric
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The Alnes et al. [1] class of 

LTB models. We considered 
2 such models, basically 

differing by the value of  Δr.

LTB metric for a 
matter dominated 

universe
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We will refer to (t, r, θ, φ) as the comoving coordinates with origin on the 
center of a spherically symmetric model (see Figure 1). Peculiar velocities 
apart, the symmetry of such a model forces objects to expand radially 
outwards, keeping r, θ and φ constant.

Artist conception of the ESA GAIA 
mission satellite. Expected launch date: 
Dec 2011. GAIA expects to perform 
astrometric measurements of some 
500,000 distant quasars.In a FRW metric, Δγ ≡ γ

2
 – γ

1
 = 0 (see Figure 1). In any anisotropic metric, 

however, Δγ ≠ 0, and we have cosmic parallax. In such cases, FRW-like 
estimates can give a reasonable prediction of the magnitude of this effect.

Peculiar velocity noise 
is not overwhelming.
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Plots for an off-center 
distance of 15 Mpc

The cosmic parallax effect can be combined with measurements of the 
time-drift of the redshift of the sources [3], to fully reconstruct the 3D 
cosmic flow of distant sources [4].
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