Mapping of the 3D-mass distribution with lensing tomography
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The Algorithm Discussion
Since its detection about a decade ago, weak gravitatienalrlg — the small, co- = -;::;-----.QQ?}?-T'D---.---:;_—\-->.
herent distortions (cosmic shear) of galaxy images (ssyrdee to the large-scale /'~ /", @ \_\\ _____________ —
matter distribution in the cosmos — has become a well-dastadl tool for studying ). ' ----------- ----------- ' --------- ----- - ' ------ 095 .............. [ -
the dark Universe. One conceivable application is the regoef the cosmic matter |~~~ "~ ===~ Sd |
distribution giving rise to the cosmic shear signal. ““F ------------- e e TOT T R ret NNV B S S SR S— -
We present a linear algorithm that allows to reconstrucBalistribution of matter ! N s Ve ) R E (RN
based on a lensing survey with redshift informatigii. available redshift informa- =~ T N T R b e
tion — both accurate source redhifts binned into thin slees broad redshift in- I i R
formation such as wide redshift distributions for faingylimz source sub-samples — 2°'C """"""" ,B\ """"" —A """" . a |
can be combined in a Bayesian sense to find the most likel\en@ttribution. See w'f ______________ - ______ p» @ " ® . B ______________________ A
Fig. O below for the set-up of the problem. The statisticalartainties of the sourc N N -1 L B
redshifts, attached as PDF’s of the redshifts to the cooredipg source sub-samplﬁ , ﬁ ; 0w o o 1 T
and the statistical uncertainty of the shape measuremantgroperly be factored =~ -~ ~ + = 7 v x
Fig. 1 A set of nine SIS, = 10°kms™!) with redshiftsz = 0.1,0.2,...,0.9 (A-l in alphabetical order) is planted into a particular s®i

intO the reCOﬂStrUCtiOn. It iS aISO pOSSible [0 account rmmmSIC alignmentS Of therealisation of the fiducial survey defined in Fig. 2. The lednpl is a 2D-projection of the reconstruction onto the skyereas the right
sources that have an impaCt on the expected Shape nOismmtS Oﬂ:_diagona panel is a projection showing the extension of the volumesdshift. The differently coloured contours are constagmali-to-noise levels

corresponding t8 /N = 8,6, 5, 3, 2.5 (darkest to brightest colour). The reconstruction is smedton each lens-plane with a Gaussian kernel

elementS)N — <TL nT> entering the algorithm of radiusl’. The employed (transverse) Wiener filter lhas- 0.01. Statistical errors can dissolve peaks as can be seen fod [E @n shift
_ VI _ _ ' _ _ peaks towards wrong redshiits, see D for instance.
The algorithm — a generalisation of the filter discussed @ In

Hu & Keeton, 2002, Phys. Rev. D., 66, 063506s a tunableq < [0, 1]) Wiener In practise, due to the relatively small signal-to-noisesbéar estimates and the

filter, based on the expected signal covaria®ce (56, of the lensing tomograph\fma” variations in the weight®, signal reconstructions are noisy and biased, I.e.
data’ (0) does not give the original matter distribution. Small or igamg o’s give

5 — S5Qtpjfm [N?P%QS&QtPTMJF&NJ1NO+@1]_1 Nglw, extremely nglsy,S/N 10 _10 ,_and IN radl_al dlrectlc_)n oscillating regon
> & -~ structions with, however, only little bias. Increasiagmeaning more regularisa-

step 3 step 2 step 1 L . . . e
which is numerically computed, step-by-step from rightefi,|from the vector of 10N, IMProves the S|gnal-to-n0|§e but smoothes and Ssiiftetures |nz-d|rect|qn,
thereby biasing the reconstruction. To lowest order théfeets can be described

the complete gridded shear information,finally yielding theminimum variance _ _ | |
estimate of the 3D-matter density. The noise covariance Is split into diagonal art?a 2 rad|a! PSF, F'g'_ 2. The has to be tuned to .ach|eve 2 reasonab_le pgy-oﬂ‘
Qﬁetween bias and noise, see Figs. 3 and 4. The bias esserdfacts our inabil

off-diagonal elementdN = Ng + N,. The practical challenge iIs the large size of ¢ _ | | T ’
involved vectors and matrices-((10°)* elements). Applications of the transform4 © PIn down exactly the redshift of a density peak due ® ioise In the data.
n the extreme case of over-

tionsP.,., Ss andN, (convolutions) to some vectar are either optimised using

kd-tree or FFT-methods, the implementation)f or N,z are trivial. The inverseregularlsatlon, one obtains essentlglly N - é%ﬁ
operator].. ]!, is solved iteratively with conjugate gradients. a 2D-reconstruction on the sky, which ... \ -~ goi
- : s stretched out radially over the entire - | "3 ~ — 0.00
- T reconstruction range lacking any radial o=~ -
T o8 __-1 information. A fiducial survey with - |
. =177 Goos e 30 sources pearcmin®, mean redshift ol
s & oo T | of z = 0.85, z < 1.5, ando, = 0.3 is |
> ,, ----- - unable §/N < 3) to identify a matter ) | s
| -,;::::: —————————— | halO Wlth Mass-~ 1015 h_lMQ or IeSS Fig. 4 Signal-to-noise ofare;Z?lZ:;Ected singular isothermbésp
e ... beyond redshift: ~ 0.6inarecon- TR e e e 0

edshift struction with moderateo( ~ 107?) (1.6 x 107 Moh™) at 2 = 0 (1). Plotted is as function of tuning

parameter (line styles) the signal-to-noise at maximurpaese red-

Fig. 2 The radial PSF of a fiducial survey & 30 arcmin™?; o, = 0.3; Fig. 3 Shift of peaks in the matter distribution towards wrong red- - - ; - e e S : . .
e i _ . | _ ) . Y ~-Shift bias. see Fia. 4. The redshift shit, fiducial parameters as in Fig. 2, the pixel siz&.igo obtain the
z = 0.85, truncated at = 1.5; 15 equally spaced matter slices be- shifts due to Wiener filtering for circular grid-pixels oftiais1’. The ] g corresponding plots for different, o’ or 7/, but all other parameters

tweenz = 0...1.5 and30 equally spaced sourceslices over same  shift depends on the tuning paramete(different line styles). The | lirmit i " N 9 \1/2
range). A density pixel of radius sitting on a lens-plane with cer- same fiducial survey as in Fig. 2 is assumed. To obtain thee<:orr||rnIt INCreases fOr deeper SurveyS. ThIS kept, rescaley — o x (g—) (%) and% — % X (g—g) (%) (%) :

tain redshift (numbers attached to curves) is in the proockasecon- sponding plots for differen#. or »’, but all other parameters kept, demonstrates that 3D_maSS reconstruc-

struction attenuated and spread out. The figure assumeassadrae o o\ (n i i ) ) )
Wiomr itor w10 s For oxample, & prctat oo O hastorescale ax () (). tions with weak lensing tomography alone are feasiblepalgin probably restricted
~ 0.03 (thick solid line). to massive structures at low or moderate redshifts for iigare surveys.

shifted toz ~ 0.2 (maximum of PSF) and attenuated with a factor of

Outline of the Map Making Problem

The (complex) ellipticities of théth source sub-sample, distinguishable from other sub-Esyy the probability distribution (PDF) of source red&)ifire binned on
a grid which is covering the survey area. In the weak lensaggme, the gridded ellipticities;'”), are a weighted sum (2D-projection) of the 3D-matter dgreantrast
thought to be constant within matter slices- 1... V;,. A matter slice is represented by the density contfdsbn a lens-planej’/ is binned on the same grid a$).

~edshift The weightsQ),;, are essentially the lensing efficiency averaged over tifenift PDF ofi-sources;fi (w)
—ee > IS the angular diameter distance for a comoving distangea given fiducial cosmological model.
mass density on lens planes For a set ofV; source sub-samples, having distinct source redshift B€e®bserve the same 3D-matter

distribution but projected using different weights:

Ny . .
(A, 4N =P, ;{Qljém, Q0 {ngl), .. ,n%NS)} .

Here,n@ denotes the statistical noise that is unavoidably presetita source ellipticities serving as
estimator for the cosmic shear signal; it stems from thensitt, unlensed shapes of the source images.
The convolutiorP.,,. transforms the projected matter density, lensing convexge, into the observable

() i Qz O Qi o (Bt cosmic sheaty. As shorthand we can write down this compilations of griddedrce ellipticities com-
8 / Adwd) - fw pactly asy = P,,.Qd +n,. A solution to the map making problem has to invert this exquatith respect
source sambple i matter slices | to the lens-plane matter density This can only be done statistically as the random nois@bifsis not

Fig. 0 lllustration of weak lensing being the weighted projectidithe 3D-matter distribution. eprICItIy known




