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The Algorithm
Since its detection about a decade ago, weak gravitational lensing – the small, co-
herent distortions (cosmic shear) of galaxy images (sources) due to the large-scale
matter distribution in the cosmos – has become a well-established tool for studying
the dark Universe. One conceivable application is the recovery of the cosmic matter
distribution giving rise to the cosmic shear signal.
We present a linear algorithm that allows to reconstruct the3D-distribution of matter
based on a lensing survey with redshift information.All available redshift informa-
tion – both accurate source redhifts binned into thin slicesand broad redshift in-
formation such as wide redshift distributions for faint, high-z source sub-samples –
can be combined in a Bayesian sense to find the most likely matter distribution. See
Fig. 0 below for the set-up of the problem. The statistical uncertainties of the source
redshifts, attached as PDF’s of the redshifts to the corresponding source sub-sample,
and the statistical uncertainty of the shape measurements can properly be factored
into the reconstruction. It is also possible to account for intrinsic alignments of the
sources that have an impact on the expected shape noise covariance (its off-diagonal
elements),N = 〈nγn

†
γ〉, entering the algorithm.

The algorithm – a generalisation of the filter discussed in
Hu & Keeton, 2002, Phys. Rev. D., 66, 063506– is a tunable (α ∈ [0, 1]) Wiener
filter, based on the expected signal covarianceSδ = 〈δδ†〉, of the lensing tomography
data
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which is numerically computed, step-by-step from right to left, from the vector of
the complete gridded shear information,γ, finally yielding theminimum variance
estimate of the 3D-matter densityδ. The noise covariance is split into diagonal and
off-diagonal elements,N = Nd + No. The practical challenge is the large size of all
involved vectors and matrices (∼ (105)2 elements). Applications of the transforma-
tions Pγκ, Sδ andNo (convolutions) to some vectorx are either optimised using a
kd-tree or FFT-methods, the implementations ofQx or Ndx are trivial. The inverse
operator,[. . .]−1, is solved iteratively with conjugate gradients.

Fig. 2 The radial PSF of a fiducial survey (n̄ = 30 arcmin−2; σǫ = 0.3;
z̄ = 0.85, truncated atz = 1.5; 15 equally spaced matter slices be-
tweenz = 0 . . . 1.5 and30 equally spaced sourcez-slices over same
range). A density pixel of radius1′ sitting on a lens-plane with cer-
tain redshift (numbers attached to curves) is in the processof a recon-
struction attenuated and spread out. The figure assumes a transverse
Wiener filter withα = 10−2. For example, a pixel atz = 0.05 is
shifted toz ∼ 0.2 (maximum of PSF) and attenuated with a factor of
∼ 0.03 (thick solid line).

Fig. 3 Shift of peaks in the matter distribution towards wrong red-
shifts due to Wiener filtering for circular grid-pixels of radius1′. The
shift depends on the tuning parameterα (different line styles). The
same fiducial survey as in Fig. 2 is assumed. To obtain the corre-
sponding plots for differentσ′

ǫ or n̄′, but all other parameters kept,
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Fig. 1 A set of nine SIS (σv = 103 km s−1) with redshiftsz = 0.1, 0.2, . . . , 0.9 (A-I in alphabetical order) is planted into a particular noise
realisation of the fiducial survey defined in Fig. 2. The left panel is a 2D-projection of the reconstruction onto the sky, whereas the right
panel is a projection showing the extension of the volume in redshift. The differently coloured contours are constant signal-to-noise levels
corresponding toS/N = 8, 6, 5, 3, 2.5 (darkest to brightest colour). The reconstruction is smoothed on each lens-plane with a Gaussian kernel
of radius1′. The employed (transverse) Wiener filter hasα = 0.01. Statistical errors can dissolve peaks as can be seen for D and E or shift
peaks towards wrong redshifts, see D for instance.

In practise, due to the relatively small signal-to-noise ofshear estimates and the
small variations in the weightsQ, signal reconstructions are noisy and biased, i.e.
〈δ〉 does not give the original matter distribution. Small or vanishing α’s give
extremely noisy,S/N ∼ 10−2 − 10−3, and in radial direction oscillating recon-
structions with, however, only little bias. Increasingα, meaning more regularisa-
tion, improves the signal-to-noise but smoothes and shiftsstructures inz-direction,
thereby biasing the reconstruction. To lowest order these effects can be described
by a radial PSF, Fig. 2. Theα has to be tuned to achieve a reasonable pay-off
between bias and noise, see Figs. 3 and 4. The bias essentially reflects our inabil-
ity to pin down exactly the redshift of a density peak due to the noise in the data.

Fig. 4 Signal-to-noise of a reconstructed singular isothermal sphere
(central pixel), SIS, positioned at different redshifts,x-axis, with
σv = 103 kms−1; this corresponds toM200 = 6.6 × 1014 M⊙h−1

(1.6 × 1015 M⊙h−1) at z = 0 (1). Plotted is as function of tuning
parameter (line styles) the signal-to-noise at maximum response red-
shift, fiducial parameters as in Fig. 2, the pixel size is1′. To obtain the
corresponding plots for differentσ′
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In the extreme case of over-
regularisation, one obtains essentially
a 2D-reconstruction on the sky, which
is stretched out radially over the entire
reconstruction range lacking any radial
information. A fiducial survey with
30 sources perarcmin2, mean redshift
of z̄ = 0.85, z ≤ 1.5, andσǫ = 0.3 is
unable (S/N . 3) to identify a matter
halo with mass∼ 1015 h−1M⊙ or less
beyond redshiftz ∼ 0.6 in a recon-
struction with moderate (α ∼ 10−2)
z-shift bias, see Fig. 4. The redshift
limit increases for deeper surveys. This
demonstrates that 3D-mass reconstruc-
tions with weak lensing tomography alone are feasible, although probably restricted
to massive structures at low or moderate redshifts for near-future surveys.

Outline of the Map Making Problem
The (complex) ellipticities of theith source sub-sample, distinguishable from other sub-samples by the probability distribution (PDF) of source redshifts, are binned on
a grid which is covering the survey area. In the weak lensing regime, the gridded ellipticities,γ(i), are a weighted sum (2D-projection) of the 3D-matter density contrast
thought to be constant within matter slicesj = 1 . . . Nlp. A matter slice is represented by the density contrastδ(j) on a lens-plane;δ(j) is binned on the same grid asγ(i).

Fig. 0 Illustration of weak lensing being the weighted projectionof the 3D-matter distribution.

The weights,Qij, are essentially the lensing efficiency averaged over the redshift PDF ofi-sources;fk(w)

is the angular diameter distance for a comoving distancew in a given fiducial cosmological model.
For a set ofNs source sub-samples, having distinct source redshift PDF’s, we observe the same 3D-matter
distribution but projected using different weights:

{γ(1), . . . , γNs} = Pγκ
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∑
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Here,n(i)
γ denotes the statistical noise that is unavoidably present in the source ellipticities serving as

estimator for the cosmic shear signal; it stems from the intrinsic, unlensed shapes of the source images.
The convolutionPγκ transforms the projected matter density, lensing convergenceκ, into the observable
cosmic shearγ. As shorthand we can write down this compilations of griddedsource ellipticities com-
pactly asγ = PγκQδ + nγ. A solution to the map making problem has to invert this equation with respect
to the lens-plane matter densityδ. This can only be done statistically as the random noise offsetnγ is not
explicitly known.


