Detecting Dark Energy from Supervoids and Superclusters

István Szapudi^{1,2,3}, Ben Granett¹, & Mark Neyrinck^{1,4}

¹Institute for Astronomy, University of Hawaii
²Institute for Advanced Studies, Collegium Budapest
³Eötvös University
⁴Johns Hopkins University

Leopoldina DARK ENERGY Conference, Munich, Oct. 7-11, 2008

イロト イポト イヨト イヨト

I. Szapudi DE from Supervoids and Superclusters

ヘロト ヘ戸ト ヘヨト ヘヨト

Integrated Sachs-Wolf Effect

- Photons passing through changing gravitational potentials are becoming slightly hotter or colder
- The effect is linear if $\Omega \neq 1$
- If the universe is flat (e.g., from CMB), linear ISW effect signals Dark Energy
- Caviat: there can be a non-linear effect as well

ヘロア 人間 アメヨア ヘヨア

ISW Effect and Cross-Correlation

- Galaxy catalogs and the CMB are correlated due to the ISW effect
- This is a tiny correlation compared to the CMB fluctuations, but it has been detected in several galaxy catalogs
- Combining all available data sets gives up to 4 σ result (Giannantonio etal, Ho etal)
- Evaluating the detection significance requires full knowledge of the covariances (between bins and catalogs)

ヘロア 人間 アメヨア 人口 ア

ISW Effect and Cross-Correlation

- Galaxy catalogs and the CMB are correlated due to the ISW effect
- This is a tiny correlation compared to the CMB fluctuations, but it has been detected in several galaxy catalogs
- Combining all available data sets gives up to 4 σ result (Giannantonio etal, Ho etal)
- Evaluating the detection significance requires full knowledge of the covariances (between bins and catalogs)

ヘロア 人間 アメヨア 人口 ア

SDSS DR6 LRG

- 7500 square degree
- 2SLAQ cuts
- 746962 objects
- 0.45 < *z* < 0.75 with median *z* = 0.52
- median photo-z errors $\sigma_z \simeq 0.04$

イロト イポト イヨト イヨト 一座

The SDSS DR6 LRG catalog

3

æ

イロン 不同 とくほ とくほ とう

WMAP 5-year data set

- co-added Q,V,W
- ILC map
- MCMC map (joint fit to temperature, polarization and foregrounds)
- KQ75 galactic foreground masks
- maps are smoothed to 1°FWHM resolution
- Healpix $N_{side} = 64$ maps, or 55 arcminute resolution

イロト イポト イヨト イヨト 三日

<ロ> (四) (四) (三) (三) (三)

Cross-correlation results with SpICE and MLHood

• Agreement with Giannantonio etal, Ho etal, e.g., 2.1 σ from the MCMC map..

<ロト <回 > < 注 > < 注 > 、

∃ 990

Beyond Cross-correlation Why in the linear regime

- Non-optimal weighting
- No redshift information was used
- Cosmic variance of galaxy data, even though we have access to a particular realization
- Perhaps more than linear signal
- ...

イロト イポト イヨト イヨト 三日

Finding Superstructures (100Mpc scales) The magic of Voboz

- Voboz/Zobov algorithms to find supervoids and superclusters int the LRG catalog
- Cutting out the highest signal-to-noise areas (simple weighting)
- Photometric redshift information is used
- Actual realization of the galaxy (DM) field is used
- Linear use of the data
- Possibility of localizing the signal, especially if there is a non-linear component

イロト イポト イヨト イヨト 三日

Supervoids and Superclusters

I. Szapudi DE from Supervoids and Superclusters

Back to the Basics: Image-stacking Granett, Neyrinck, & Szapudi 2008, ApjL, 68, L99-102

 Two different Monte Carlos to determine significance: agree within 2%

・ロン ・ 一 マン・ 日 マー・

Detection significance Robust against number, radius, color.

Ν	Radius	$\Delta T \mu K$	$\Delta T/\sigma$
30	4.0°	11.1	4.0
50	4.0°	9.6	4.4
70	4.0°	5.4	2.8
50	3.0°	8.4	3.4
50	3.5°	9.3	4.0
50	4.0°	9.6	4.4
50	4.5°	9.2	4.4
50	5.0°	7.8	3.8

ヘロア 人間 アメヨア ヘヨア

æ

Granett, Neyrinck, & Szapudi, in prep.

- What does this mean, how do we do cosmology with our results?
- Understand Voboz/Zobov or simplify technique
- Keep advantages: weighting, redshift information and realization.
- Calculate the potential from the galaxies (N-body engine)
- Raytracing, using the linear growth factor to calculate derivatives in 2 $\int \dot{\phi}$
- Use maximum likelihood to reveal the signal in the CMB data.

ヘロト ヘアト ヘビト ヘビト

Potential map corresponding to the LRG catalog

I. Szapudi DE from Supervoids and Superclusters

Max. Likelihood/Matched Filter

- if $Y = \lambda X$ plus some noise (here the CMB)
- Maximum likelihood gives

$$\hat{\lambda} = \frac{XC^{-1}Y}{YC^{-1}Y},\tag{1}$$

イロト イポト イヨト イヨト 三日

- with variance $\sigma^2 = (YC^{-1}Y)^{-1}$, where $C = \langle X_i X_j \rangle$
- λ is related to the bias (and any numerical factors missed in the prediction)
- looks like an optimal sum over a two-point quantity

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Detection Significance from Potential Map

Мар	Amplitude	σ
Q Coadd	$\textbf{2.96} \pm \textbf{1.71}$	1.7
V Coadd	$\textbf{3.33} \pm \textbf{1.71}$	1.9
W Coadd	$\textbf{3.01} \pm \textbf{1.71}$	1.8
Q FG reduced	$\textbf{3.43} \pm \textbf{1.71}$	2.0
V FG reduced	$\textbf{3.52} \pm \textbf{1.71}$	2.1
W FG reduced	$\textbf{3.20} \pm \textbf{1.71}$	1.9
MCMC	$\textbf{3.75} \pm \textbf{1.71}$	2.2
ILC	$\textbf{4.33} \pm \textbf{1.67}$	2.6

<ロ> (四) (四) (三) (三) (三)

Disappearing the cross-correlations

프 🖌 🖌 프

3

Potential + Superstructures Formally a 5.3 σ signal

I. Szapudi DE from Supervoids and Superclusters

Summary www.ifa.hawaii.edu/supervoids for more

- Over 2σ detection of the linear ISW from cross-correlation and (marginally better) potential maps from the LRG's
- Cross-correlation disappears when the best fit ISW map is subtracted
- Signal from superstructures over 4σ very robustly
- This appears to be in addition to the linear ISW signal
- Potential + Superstructures $5.3\sigma!$
- The nature of the signal from superstructures is yet to be determined (astrophysical, non-linear, or...?)
- Pan-STARRS will be able to confirm all these measurements with overwhelming statistical significance: 6σ for linear ISW.
- Theoretical investigations of the non-linear ISW are on-going.