Physics of Galactic Nuclei, June 15, 2009

STELLAR POPULATIONS IN THE CENTRAL KPC OF SEYFERT GALAXIES

G. Dumas, MPIA E. Emsellem (ESO), C. Mundell (ARI, Liverpool)

LOW LUMINOSITY AGN AGN FUELING

${\circ}$ Low accretion rates: ~10^{-2} M_{\odot}/yr

- Need small amount of gas
- Small-scale accretion events (King & Pringle 07)

• Angular momentum problem

- Presence of gas in the inner 100pc in Seyfert galaxies
- Transport down to few 0.1pc = remove totally the angular momentum!

• fuelling mechanisms:

- Galaxy interaction, mergers
- Stellar bars, bar within bar scenario

LOW LUMINOSITY AGN AGN FUELING

- No statistically-significant difference between Seyfert and non-active galaxies on spatial scales that encompass galaxy interaction, large-scale and nuclear bars and spirals
- Presence of dust and isophotal disturbance in Seyferts (Hunt & Malkan 04, Simões Lopes et al. 07)
- Kinematic study needed along with imaging
 - Kinematic differences between Seyferts and non-active galaxies?
 - Signature of fuelling mechanisms
 - Role of the host on nuclear activity?

LOW LUMINOSITY AGN SF & NUCLEAR ACTIVITY

• Connection between nuclear activity and SF

• Role of the SF in the nuclear activity:

- SF and AGN require fuel
- SF consume the gas for the AGN
- Stellar mass loss as fuel of the central engine
- Stellar population properties/nuclear activity
 - Differences Seyfert/non-active galaxies?
 - Context AGN fuelling/galaxy formation

LOW LUMINOSITY AGN AGN FUELING

• Morphology & dynamics, stars & gas 28 pairs Seyfert/non-active galaxies matching large scales properties

 Two complementary surveys
 VHIKINGS (Mundell et al. 07) VLA: HI (21cm) Galactic disk + nearby environment
 Sauron/Seyfert (Dumas et al. 07) Sauron: 3D spectroscopy Ionized gas + stars Central regions (< kpc)

LOW LUMINOSITY AGN AGN FUELING

 Morphology & dynamics, stars & gas 28 pairs Seyfert/non-active galaxies matching large scales properties

• Two complementary surveys • VHIKINGS (Mundell et al. 07) VLA: HI (21cm) Galactic disk + nearby environment • Sauron/Seyfert (Dumas et al. 07) Sauron: 3D spectroscopy Ionized gas + stars Central regions (< kpc)

SAMPLE SAURON/SEYFERT

NGC4051(S)

NGC4579(S)

NGC6951(S)

NGC4459(C)

```
5 kpc
NGC5248(C)
```


- 15 galaxies: 7pairs + 2 Seyferts
- FOV= 41"x33" 2kpc to 20pc

Dumas Gaelle

- SAURON DATA STELLAR KINEMATICS
- Spatial binning S/N>60
- Mask of emission lines
 - Broad lines
 - Multi-components

• Deconvolution: pPXF method (Cappellari & Emsellem 2004)

- LOSVD distribution: V, σ , h_3 , h_4
- Optimal template

Physics of Galactic Nuclei, June 15, 2009

SAURON MAPS STELLAR KINEMATICS

- Regular rotation patterns
- kinematic and photometric PA aligned

dominated by disc-like rotation for both Seyfert and control galaxies

SAURON MAPS STELLAR KINEMATICS

• Presence of σ -drops:

- Star formations, recent accretion event (Wozniak et al. 2003)
- Common in nearby spiral galaxies (Ganda et al. 2006, Peletier et al, 2007)
- Nuclear stellar disk

SAURON MAPS STELLAR KINEMATICS

• Presence of σ -drops:

• 6 Seyferts (75%), 1 non-active galaxy 17%

SAURON MAPS STELLAR KINEMATICS

• Presence of σ -drops:

- 6 Seyferts (75%), 1 non-active galaxy 17%
- Seyferts 1 : BLR emission line contaminate the central regions
- \Rightarrow Remain 50% of Seyfert and 17% of Control
- σ-drops frequency ~40% in early type galaxies (e.g.Peletier et al. 07)
 - Seyferts consistent
 - Control galaxies significantly lower

NGC4051 S1

Dumas Gaelle

SAURON MAPS Absorption-line strength

SAURON MAPS Absorption-line strength

- Smooth distribution
 - \Rightarrow NGC4579
 - \Rightarrow 50% Seyfert, 33% non-active

- Structures with high H eta , low Mg b & Fe 5015: young stars
 - Compact central regions
 - \Rightarrow NGC2655
 - \Rightarrow 37% Seyfert, 17% non-active
 - rings
 - \Rightarrow NGC3351
 - \Rightarrow 13% Seyfert, 50% non-active

AGE, METALLICITY, ABUNDANCE SSP ANALYSIS

- Central values R < Re/10
- Single-burst population models of Thomas et al. 2003
 - age
 - Metallicity
 - Abundance ratios

Dumas Gaelle

Physics of Galactic Nuclei, June 15, 2009

AGE, METALLICITY, ABUNDANCE SSP ANALYSIS

- Central values R < Re/10
- Single-burst population models of Thomas et al. 2003
 - age
 - Metallicity
 - Abundance ratios

- Seyfert slightly younger than control
- Non statistically difference: ages between 8 and 10 Gyr
- Seyferts 1: problems

Dumas Gaelle

- Central values R < Re/10
- α /Fe enhancement
 - Between -0.2 and 0.2
 - Control galaxies: median=0.04
 - Seyferts: median = 0.12

• Metallicity

- Between 0.4 and 0.7
- Median at 0.6 for both Seyfert and control galaxies

CONCLUSIONS

- σ-drops 50% Seyfert / 17% Control
 BUT Control frequency too low
- Line strength indice σ relation
 - Seyfert & Control galaxies consistent with early type spirals
- Seyfert systematically younger and super-solar α /Fe enhancement

BUT differences small!

Non significant difference between Seyfert and Control galaxies

CONCLUSIONS

- Maps of age, z and α /Fe
 - Structures
 - gradients
- SSP analysis
 - Over simplification
 - If 2 population: SSP => old low Z population (Allard et al 06)
- NEED Two-population analysis
 - Link with sigma-drops: nuclear stellar disk
 - SF history in the nuclear region

RADIAL PROFILES

KINEMATICS STUDY Pyring

 $V_{LOS} = V_{sys} + V_{\phi}(R,\phi) \cdot \cos(\phi) \cdot \sin(i) + V_{R}(R,\phi) \cdot \sin(\phi) \cdot \sin(i)$

RADIAL PROFILES

- Elliptical rings: center, PA, I from fit of the stellar velocity field
- \circ Radial profiles computed by averaging σ and line strength maps over these rings