Spectral fitting methods

Welcome!

Probabilities of discrete events

Probabilities of hypotheses

Scientific application

Welcome!

Probabilities of discrete events

Probabilities of hypotheses

Scientific application

Poisson distribution (by Abraham de Moivre) Bayesian inference (by Pierre-Simon Laplace)

Horse kicks (by Ladislaus Bortkiewicz)

Stigler's law of eponymy (Robert K. Merton)

Welcome!

- Practical information
 - organisers
 - wifi
 - local information
 - rough agenda & goal
 - dinner
- First content block

Local information

Agenda

• Morning

- Measurement process & statistics involved
- Background treatment
- Local best fits
- Lunch Cantine
- Afternoon
 - Global fits & probability distributions
 - Model comparison
 - Coffee 15:30
 - Combining information
 - Beyond X-ray spectra
 - Discussion & Questions
- End: 17:30. Dinner 19:00
- Morning
 - Extended sources, calibration
 - Discussion & Questions
 - Poisson knowledge & practical pointers

Goal: what methods exist what are their benefits & limitations what to pay attention to

Dinner today 19:00

- U6+Bus 59
 - Dietlindenstr.
 - Bus 59 Giesing
 - Richard-Strauss-str.
- U6+U4
 - Odeonsplatz
 - U4 Arabellapark
 - Richard-Strauss-str.

Dinner today 19:00

- U6+Bus 59
 - Dietlindenstr.
 - Bus 59 Giesing
 - Richard-Strauss-st
- U6+U4
 - Odeonsplatz
 - U4 Arabellapark
 - Richard-Strauss-st

First block

- Overview & Introduction
 - Measurement process
 - Background & source regions
 - Linear algebra approximation
 - Likelihood & statistics
- after: background
- after: fitting

What Counts

Single spectral bin

- Bernoulli coin flip
 - k=0 (p)
 - k=1 (1-p)
- Binomial
 - n tries, first k successful
 - $-P=p^{k}(1-p)^{(n-k)}$
- Poisson
 - n \rightarrow inf but pn= λ

rule of thumb: if n>20 and p<0.05 n>100 and np<10

$$P(X=k)=inom{n}{k}(p)^k(1-p)^{n-k}$$

Single spectral bin

- Poisson
 - k: integer $P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$
 - $-\lambda$: real (mean&variance)
 - Asymmetric
 - Integer
 - Positive
- Scaling
- Addition
- Subtraction

shape changes

λ

(Poisson distribution) Variability!

(Skellam distribution)

Samples Electronics (shot noise) Photon counting (Poisson noise)

Single spectral bin

0.35

0.30

0.05

0.00

5

10

15

♀^{0.25} × 0.20 $\lambda = 1$

 $\lambda = 4$

 $\lambda = 10$

20

- Poisson
 - k: integer $P(k) = e^{-\lambda} \frac{\lambda^k}{k!}$
 - $-\lambda$: real (mean&variance) $_{0.10}^{0.15}$
- Gaussian
 - Mean (µ) & variance (σ^2) = λ
 - Mean (µ) & variance (σ^2) = k
 - real, can be negative

Approximation quality

- Tails have different slopes
 - Gauss high-end more permissive
 - Poisson low-end more permissive
- Right way: Poisson
- Historically: Gauss faster to evaluate

"Statistics"

Poisson

- Likelihood $\mathcal{L}(k|\lambda) = e^{-\lambda} \lambda^k / k!$ -2*log \rightarrow -2log $\mathcal{L}(k|\lambda) = 2\lambda - 2k \log \lambda + C$

• Gaussian

- Likelihood
$$\mathcal{L}(k|\mu,\sigma) = \exp[-((x-\mu)/\sigma)^2/2]/\sqrt{2\pi\sigma^2}$$

-2*log \rightarrow -2log $\mathcal{L}(x|\mu,\sigma) = ((x-\mu)/\sigma)^2 + C$

"Statistics"

Poisson

- Likelihood
$$\mathcal{L}(k|\lambda) = e^{-\lambda}\lambda^k/k!$$

-2*log \rightarrow -2log $\mathcal{L}(k|\lambda) = 2\lambda - 2k\log\lambda + C$
CStat, Cash

Gaussian

- Likelihood $\mathcal{L}(k|\mu,\sigma) = \exp[-((x-\mu)/\sigma)^2/2]/\sqrt{2\pi\sigma^2}$ -2*log \rightarrow -2log $\mathcal{L}(x|\mu,\sigma) = ((x-\mu)/\sigma)^2 + C$ Chi²

Does not mean they follow a chi² distribution!

Cash (1979)

Multiple bins

Poisson

 $\mathcal{L}(k_1, k_2 | \lambda_1, \lambda_2) = e^{-\lambda_1} \lambda_{11}^k e^{-\lambda_2} \lambda_{22}^k$

 $2\lambda_1 - 2k_1\log\lambda_1 + 2\lambda_2 - 2k_2\log\lambda_2 + C$

Gaussian

 $\mathcal{L}(x_1, x_2 | \mu_1, \sigma_1, \mu_2, \sigma_2) = \exp[-((x_1 - \mu_1) / \sigma_1)^2] \exp[-((x_2 - \mu_2) / \sigma_2)^2]$

$$((x_1 - \mu_1)/\sigma_1)^2 + ((x_2 - \mu_2)/\sigma_2)^2$$

Multiple bins

 $\overrightarrow{\lambda} = \overrightarrow{F} \cdot \underline{R}$ $C = 2\overrightarrow{\lambda} \cdot \overrightarrow{\lambda} - 2\overrightarrow{k} \cdot \log \overrightarrow{\lambda}$

Backgrounds

Backgrounds

Assume time, location-independence

 $k_{_{Src}},\!\lambda_{_{Src}},\!t_{_{src}},\!A_{_{Src}}$ $k_{bkg}, \lambda_{bkg}, t_{bkg}, A_{bkg}$

$$\vec{\lambda}_{\rm src} = \vec{F}_{\rm src} \cdot \underline{R}_{\rm src} + \vec{F}_{\rm bkg} \cdot \underline{R}_{\rm src}$$
$$\vec{\lambda}_{\rm bkg} = \vec{F}_{\rm bkg} \cdot \underline{R}_{\rm bkg}$$
$$C = 2\vec{\lambda}_{\rm src} \cdot \vec{\lambda}_{\rm src} - 2\vec{k}_{\rm src} \cdot \log \vec{\lambda}_{\rm src}$$
$$2\vec{\lambda}_{\rm bkg} \cdot \vec{\lambda}_{\rm bkg} - 2\vec{k} \cdot \log \vec{\lambda}_{\rm bkg}$$

Assumptions:

- area energy-independent - rate constant with area, time, location

Remember: λ =number / cm² / s / keV * dE * dt * dA

 λ =number / cm² / s / keV * dE * dt * dA

Background + Source

- src+bkg Gauss \rightarrow Gauss (subtractable, flats/darks)
- src+bkg Poisson \rightarrow Poisson
 - High counts (>100) in every single src and bkg bin \rightarrow Gauss + Subtract with bkg variance propagation
 - Subtract & model with Skellam distribution
 - Do the right thing and model <u>both</u> as Poisson
 - •
 - •
 - •

Background + Source

- src+bkg Gauss → Gauss (subtractable, flats/darks)
- src+bkg Poisson \rightarrow Poisson
 - High counts (>100) in every single src and bkg bin \rightarrow Gauss + Subtract with bkg variance propagation
 - Subtract & model with Skellam distribution
 - Do the right thing and model <u>both</u> as Poisson
 - Poisson estimate of rate in each bin, independently
 - Function approximation of background
 - In counts (empirical model)
 - Physical background flux model
 - Fit simultaneously with source
 - Fit background model first, use best-fit background shape for source fit

 λ =number / cm² / s / keV * dE * dt * dA

eROSITA background

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background

Semi-physical background models

 \rightarrow especially important for extended source

Empirical background models

Maximize poisson likelihood at all bins →shape

Pros:

- Can contain physical knowledge & smoothness
- Small uncertainties
- 0 bin counts ok

Cons:

- Need to specify modelFit can be poor

Chandra

(XMM, Chandra, Swift models in-house)

Empirical background models

Automated shape finding Simmonds, Buchner et al. (2017)

XMM/PN,MOS, Chandra/ACIS, NuSTAR, Suzaku, RXTE, Swift/XRT

Estimate most likely background rate in each bin

Add scaled to source region counts

(wstat, Xspec default if set to cstat with no background model) pgstat Pros:

 no model specification needed

Cons:

- no continuity
- unnecessarily large uncertainties
- need >0 counts per bin
Inference with likelihoods

$$\mathcal{L}(\overrightarrow{k}|\theta_1, \theta_2, \dots, \theta_d, M, R, B, \dots)$$

Higher L: model under these parameters often makes this data Lower L: less frequently

 \rightarrow Frequency of data $P(D|\theta)$

Likelihood function at D, at parameter values (not a density)

Inference desiderata

• Parameter ranges allowed or probable (L, T, ..., physical parameters) $P(\theta|D)d\theta$

Probability density

In infinitely small region: zero probability

Conditional probabilities

- Bayes theorem
- P(A|B) != P(B|A)
- Normalisation
- Parameter inference
- Model inference
- Interpretation

Conditional probabilities

$$egin{aligned} A &\frown B &= B &\frown A \ p(A &\frown B) &= p(B &\frown A) \ p(A|B)p(B) &= p(B|A)p(A) \ p(A|B) &= rac{p(B|A)p(A)}{p(B)} \ p(heta|D) &= rac{p(D| heta)p(heta)}{p(D)} \end{aligned}$$
 Bayes theo

Parameter space exploration

Parameter space exploration

- Local optimization
 - LM, simplex, ... (many)
 - Monte carlo optimization
- Local sampling: MCMC
 - Tempering
 - Limitations
- Global optimization
 - Genetic algorithms (DE)
- Global sampling
 - Nested sampling

Best fit parameters

If many data are created under θ logL interval -1 below best fit Contains true value 68% of realisations

Confidence interval

What was the question again? Are conditions fulfilled? What do unequal "errors" mean?

- If away from boundary
- If model is linear
- If ndata \rightarrow high (symmetric, single gauss)
- If θ is true parameter

→ then

Best fit parameters

Calibrate a Confidence interval

Detection

Best fit distributions

Convolution of

True parameter distribution + Measurement error & analysis method

Confidence intervals

Histogram of best fits

Meaning? Upper limits?

Cumulative distribution

Clean solution: Model population distribution (HBM) Buchner+17a

Sampling

For example with a grid

Posterior grid

- evaluate *likelihood* at every point
 - how prone is the process to produce the observed data
- Compute relative importance:

• Grab those that make up 90% of $\sum \mathcal{L}$

- $Z=\mathcal{L}$ "evidence" is average likelihood

Posterior grid

- Result is dependent on placement
- Equal spacing in $heta_1$ or in $\log heta_1$.
- Choice of spacing is called "prior"
- coin = investment in computing there, put coins where it is worthwhile

Bayesian posterior

parameter solutions weighted by their probability

Ρ

Credible intervals

Definitions:

Density \rightarrow cumulative \rightarrow quantiles

Highest Density Intervals

Borders (upper limits)

- Compare two parameter spaces by $\sum \mathcal{L}\Big|_{M1} / \sum \mathcal{L}\Big|_{M2}$
- How many coins to put in M1, M2?
- model prior

Parameter Estimation vs. Model Comparison

- Remove coins contributing less than 10%.
- Under Bayesian inference, same problem:
 - comparing bags of hypotheses

- prior is measure, rule of averaging, deformation of space to "natural variables", investment in/weighting of sub-regions
- most common priors: uniform, log-uniform.
- model priors are relative size of spaces

Curse of dimensionality

- kd grid \rightarrow infeasible
- Sample θ
 - $\boldsymbol{\theta}_1 \ \boldsymbol{\theta}_2 \ \boldsymbol{\theta}_3 \ \dots$
 - $W_1 W_2 W_3$

(Posterior chains)

- Techniques:
 - Importance sampling
 - MCMC
 - Nested sampling

Using posterior chains

- Posterior chain $\theta_1 \theta_2 \theta_3 \dots$
- Find regions with high prob
- Compute prob. of regions

 $og_{10}L_{2-10keV}$

40

35

30 L

2

- Posterior predictions
- Derived quantities

Importance sampling

Ρ

Draw from proposal distribution Q

Weigh by $Q(\theta)/P(\theta|D)$

 \rightarrow weighted θ chain

Advantages:

θ

- Efficient in low-d
- Parallelisable
- Can integrate parameter space

Disadvantages

- Need to find good proposal (VB)
 Poor scaling to 10-20d
 Poor performance if proposal is bad (variance indicator)

Markov Chain Monte Carlo L Starting point θ Х Loop forever: $\theta' = Normal(\theta, sigma_p)$ if $P(\theta'|D)/P(\theta|D) > U()$: $\theta = \theta'$ add θ to chain θ

- Missing ingredient: transition kernel
- tune to the problems
- Fraction of visits ~ converges to ~ probability of hypothesis
- Where does chain spend 90% of its visits

MCMC

MCMC proposals

- Metropolis + Random Walk
- Goodman-Weare (emcee)
- HMC (Hamiltonian Monte Carlo)

 \rightarrow animation

https://chi-feng.github.io/mcmc-demo/app.html

Random walk, HMC

MCMC proposals

- Metropolis Random Walk
 - Adv: simple
 - Disadv: poor mixing
- Affine-invariant ensemble Goodman & Weare (2010)
 - Adv: auto-tuning for gaussian L
 - Disadv: poor mixing in bananas, collapses in high-d (Huijser+15)
- HMC (Hamiltonian Monte Carlo)
 - Adv: tunes itself to surface
 - Disadv: need gradients of models

MCMC stopping

- MCMC theory: n→inf
- Trace plots
- Autocorrelation length
- Convergence tests
 - Detect if unreliable
 - Gelman-Rubin diagnostic
 - (many more)

Phases:

Identification Mixing

Global optimization

Escaping local maxima: strategies

- Multiple random start positions
 - Augment local techniques
- Make surface easier
 - Tempering/Annealing
- Walker population
 - GW
 - Genetic algorithms (DE)

Genetic algorithms

Mutation

Cross-over

Initial population

Selection

With fitness function (here: L)

New generation

Genetic algorithms

Differential evolution

Zooms into highest regions

moncar

Advantages:

- Global
- Robust to degeneracies, auto-tuning proposal
 Works in high-d & non-continuous parameters

Disadvantages:

- Some tuning parameters
 stopping criterion may not be meaningful
 Does not sample (only best-fit)

Model comparison

Model comparison

Buchner+14

- Empirical models
 - Information content
 - Prediction quality
- Component presence
 - Regions of practical equivalence
- Physical effects
 - Bayesian model comparison
 - Priors often well-justified

Betancourt (2015)

Information criteria

Akaike information criterion

```
Akaike (1973)
```

• Is more complex worth storing?

 $AIC = 2 * d - 2 * L_{max}$ AIC = 2 * d + CStat

Advantages:

- rooted in information theory
- independent of prior

Disadvantages:

- No uncertainties, thresholds unclear

- ...

- Compare two parameter spaces by $\sum \mathcal{L}\Big|_{M1} / \sum \mathcal{L}\Big|_{M2}$
- How many coins to put in M1, M2?
- model prior

Punishing prediction diversity

(not number of parameters)

L high, V tiny

L medium, V medium

What to do with Z

• Z1, Z2

$\frac{p(M1|D)}{p(M2|D)} = \frac{Z1 \cdot p(M1)}{Z2 \cdot p(M2)}$

Posterior odds ratio

Bayes factor od

• Z1, Z2

• model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

Global sampling

nested sampling idea

- MCMC: only consider likelihood ratios. Integration by vertical slices
- nested sampling: compute geometric size at various likelihood thresholds
- orthogonal, unique re-ordering of volume by likelihood

nested sampling algorithm

- Start with volume 1, draw randomly uniformly 200 points
- remove one, volume shrinks by 1/200.

- draw a new one excluding the removed volume
- Unique ordering of space required: via likelihood

draw a new uniformly random point, with higher likelihood (the crux of nested sampling)

- Scanning up vertically, done at some point
- converges (flat at highest likelihood)

Missing ingredients

- MCMC: Insert tuned transition kernel
- NS: Insert constrained drawing algorithm
 - General solutions: MultiNest, MCMC, HMCMC, Galilean, RadFriends, PolyChord

RadFriends / MultiNest

- Use existing points to guess contour
- Expand contour a little bit
- Draw uniformly from contour
- Reject points below likelihood threshold
- RadFriends: Compute distance at which every point has a neighbor. Bootstrap (Leave out) for safety.
- MultiNest clusters and uses ellipses

Animation:

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,standard (via chi-feng.github.io)

• Z1, Z2

model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

• Z1, Z2

$\frac{p(M1|D)}{p(M2|D)} = \frac{Z1 \cdot p(M1)}{Z2 \cdot p(M2)}$

Posterior odds ratio

Bayes factor od

• Z1, Z2

• model priors: leave to reader or motivated by theory

- Discard highly improbable model or marginalise
- Does $rac{p(M1|D)}{p(M2|D)} = 3/1$ mean M2 is correct in a quarter of the cases?

Calibrating model decisions

- Model probabilities \rightarrow decisions
- False decision rate (false positives/negatives)
 - Monte Carlo simulations (parametric bootstrap)

Buchner+14

Calibrating model decisions

False negatives Non-decisions

Buchner+14

Advantages:

- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian method
 Completely Bayesian treatment + decisions

Disadvantages:

- Can be computationally expensive

Frequentist properties of Bayesian methods

- Make decisions
 - Is parameter greater than C?
 - Is this model "better" than the other?
- Parametric bootstrap
 - Monte Carlo simulation allow arbitrary complexity

Model comparison

Agenda

- Yesterday:
 - Basic statistics, problem setup
 - Parameter estimation methods, credible & confidence intervals
 - Model comparison methods
 - Visualisations
- Today:
 - Extended sources, calibration
 - Stacking information
 - Discussion & Questions
 - Practical pointers & Wrap-up
- Not covered:
 - Tools
 - Pile-up & variability

Spectroscopy + lower E + higher E + imaging + time Outside spectroscopy

Spectra with few counts

Spectra with few counts

- Are nothing special
- Poisson likelihood + good background handling
- 0 counts

• Think in terms of allowed regions

L, N_H from X-ray spectrum

L, N_H from X-ray spectrum

Intrinsic parameter distributions

Example

- Measurement gave
 - x1 = 4 + -1x2 = 5 + -0.1
- Generate 100 samples for each

100xN matrix of x

• Evaluate model

100xN matrix of x

100xN matrix of F

• Sum probabilities

- Multiply probabilities
- Then try out other model parameters

Behaviour

• Generate from 6+-2 with measurement errors

 σ

 σ

Practical pointers

Practical advice

- You can do this in any package!
- State what you are doing
- CStat (Poisson)
- Background with functions (check fit)
- Visualise, visualise, visualise
- Show posterior distributions & fits in data space
- Vary priors & assumptions
- Use nested sampling, MCMC with care
- Make simulations
- Ask for help

isis, sherpa, spex, xspec, 3ml, ...

Contact points for questions

- Ask a colleague
- Astrostatistics Facebook group
- XSPEC Facebook group
- @MPE
 - J Michael Burgess– Johannes Buchner