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Welcome!

Probabilities of discrete events Probabilities of hypotheses

Poisson distribution
(by Abraham de Moivre)

Bayesian inference
(by Pierre-Simon Laplace)

Scientific application

Horse kicks
(by Ladislaus Bortkiewicz)

Stigler's law of eponymy
(Robert K. Merton)



Welcome!
● Practical information

– organisers
– wifi
– local information
– rough agenda & goal
– dinner

● First content block



Local information



Agenda
● Morning

– Measurement process & statistics involved
– Background treatment
– Local best fits

● Lunch Cantine
● Afternoon

– Global fits & probability distributions
– Model comparison
– Coffee 15:30
– Combining information
– Beyond X-ray spectra
– Discussion & Questions

● End: 17:30. Dinner 19:00
● Morning

– Extended sources, calibration
– Discussion & Questions
– Poisson knowledge & practical pointers

Goal: 
what methods exist
what are their benefits & limitations
what to pay attention to



Dinner today 19:00
● U6+Bus 59

– Dietlindenstr.
– Bus 59 Giesing
– Richard-Strauss-str.

● U6+U4
– Odeonsplatz
– U4 Arabellapark
– Richard-Strauss-str.
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First block
● Overview & Introduction

– Measurement process
– Background & source regions
– Linear algebra approximation
– Likelihood & statistics

● after: background
● after: fitting



What Counts



Single spectral bin
● Bernoulli coin flip

– k=0  (p)
– k=1 (1-p)

● Binomial
– n tries, first k successful
– P=pk (1-p)(n-k)

● Poisson
– n inf but pn=→inf but pn=λ λ

rule of thumb: if n>20 and p<0.05
                         n>100 and np<10



Single spectral bin
● Poisson

– k: integer
– : real (mean&variance)λ
– Asymmetric
– Integer
– Positive

● Scaling
● Addition
● Subtraction

Samples
Electronics (shot noise)
Photon counting (Poisson noise)

(Skellam distribution)

(Poisson distribution)
Variability!

λ

shape changes



Single spectral bin
● Poisson

– k: integer
– : real (mean&variance)λ

● Gaussian
– Mean (µ) & variance ( ²) = ) = σ²) = λ
– Mean (µ) & variance ( ²) = ) = kσ²) = 
– real, can be negative

λ



Known data

Unknown rate

Likelihood

Probability (frequency) 
to produce exactly 
this data
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Known data

Unknown rate

Likelihood

Probability (frequency) 
to produce exactly 
this data



Approximation quality
● Tails have different slopes

– Gauss high-end more permissive
– Poisson low-end more permissive

● Right way: Poisson
● Historically: Gauss faster to evaluate



“Statistics”
● Poisson

– Likelihood
-2*log  →inf but pn=λ

● Gaussian
– Likelihood

-2*log  →inf but pn=λ



“Statistics”
● Poisson

– Likelihood
-2*log  →inf but pn=λ

● Gaussian
– Likelihood

-2*log  →inf but pn=λ

CStat, Cash

Chi²

Does not mean they follow a chi²) =  distribution!

Cash (1979)



Multiple bins
● Poisson

 

● Gaussian

k1,λ1 k2,λ2



Multiple bins

k1,λ1 k2,λ2

Remember: 
=number / cm²) =  / s / keV * dE * dt * dAλ

k=number

Flux 

Counts



Backgrounds



Backgrounds

k1S,λ1S

k1B,λ1B

ksrc,λsrc,tsrc,Asrc

kbkg,λbkg,tbkg,Abkg

Assume time, location-independence



Background + Source

Remember: 
=number / cm²) =  / s / keV * dE * dt * dAλ

+

Assumptions:
- area energy-independent
- rate constant with area, 
time, location
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Background + Source
● src+bkg Gauss  Gauss (subtractable, flats/darks)→inf but pn=λ

● src+bkg Poisson  Poisson→inf but pn=λ
– High counts (>100) in every single src and bkg bin  Gauss + →inf but pn=λ

Subtract with bkg variance propagation
– Subtract & model with Skellam distribution
– Do the right thing and model both as Poisson

●

●

●



Background + Source
● src+bkg Gauss  Gauss (subtractable, flats/darks)→inf but pn=λ

● src+bkg Poisson  Poisson→inf but pn=λ
– High counts (>100) in every single src and bkg bin  Gauss + →inf but pn=λ

Subtract with bkg variance propagation
– Subtract & model with Skellam distribution
– Do the right thing and model both as Poisson

● Poisson estimate of rate in each bin, independently
● Function approximation of background

– In counts (empirical model)
– Physical background flux model

– Fit simultaneously with source
– Fit background model first, use best-fit background 

shape for source fit



Background + Source

Remember: 
=number / cm²) =  / s / keV * dE * dt * dAλ

Assumptions:
- area energy-independent
- rate constant with area, 
time, location



eROSITA background
● Diffuse emission

– Local hot bubble
– Galactic disk
– Galactic halo

● Cosmic 
background
– Unresolved AGN

● High-energy 
particle 
background

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background 

https://wiki.mpe.mpg.de/eRosita/ScienceRelatedStuff/Background


Semi-physical background models

Maximize poisson 
likelihood at all bins
→inf but pn=λshape 

NuSTAR (Wik+14) 

 →inf but pn=λ especially important for extended source

Particle background
Cosmic background
Instrumental background
… 
Location & time-
dependent



Empirical background models

Maximize poisson 
likelihood at all bins
→inf but pn=λshape 

Chandra

(XMM, Chandra, Swift models in-house)

Pros: 
● Can contain physical 

knowledge & 
smoothness

● Small uncertainties
● 0 bin counts ok

Cons: 
● Need to specify model
● Fit can be poor



Empirical background models
Automated shape finding 
Simmonds, Buchner et al. (2017)

XMM/PN,MOS, Chandra/ACIS, NuSTAR, 
Suzaku, RXTE, Swift/XRT



Background: Individual bins

Estimate most likely 
background rate in each bin 

Add scaled to source region 
counts

(wstat, 
Xspec default if set to cstat 
with no background model)
pgstat

Pros: 
● no model specification 

needed

Cons: 
● no continuity
● unnecessarily large 

uncertainties
● need >0 counts per bin



Inference with likelihoods
-0.5 Cstat, -0.5 chi²

Higher L: model under these parameters often makes this 
data
Lower L: less frequently

 →inf but pn=λ Frequency of data

Likelihood function at D, at parameter values   (not a density)



Inference desiderata
● Parameter ranges allowed or 

probable (L, T, …, physical 
parameters) 

In infinitely small region: zero probability

Probability density

VolumeDensity

Probability mass

Find regions with high 
probability mass

Parameter space exploration



Conditional probabilities
– Bayes theorem
– P(A|B) != P(B|A)
– Normalisation
– Parameter inference
– Model inference
– Interpretation



Conditional probabilities

Bayes theorem



Parameter space 
exploration



Parameter space exploration

● Local optimization

– LM, simplex, … (many)

– Monte carlo optimization

● Local sampling: MCMC

– Tempering

– Limitations

● Global optimization

– Genetic algorithms (DE)

● Global sampling

– Nested sampling



Best fit parameters
● If away from boundary

● If model is linear

● If ndata  high→inf but pn=λ

● If  is true parameterθ is true parameter

 →inf but pn=λ then

(symmetric, 
single gauss)

If many data are created under θ is true parameter
logL interval -1 below best fit
Contains true value 68% of realisations

Confidence interval

What was the question again?
Are conditions fulfilled?
What do unequal “errors” mean?



Best fit parameters
● If away from boundary

● If model is linear

● If ndata  high→inf but pn=λ

● If  is true parameterθ is true parameter

(symmetric, 
single gauss)

Confidence interval

If conditions 
are not met

(always)

 →inf but pn=λ Monte Carlos simulations
                  (parametric bootstrap)

θ is true parameterin

Calibrate a

θ

L



Detection
● If away from boundary

● If model is linear

● If ndata  high→inf but pn=λ

● If  is true parameterθ is true parameter

(symmetric, 
single gauss)

If conditions 
are not met

(always)

 →inf but pn=λ Monte Carlos simulations
                  (parametric bootstrap)

θ is true parameterin=0 θ

LL

… p-values



Best fit distributions

θ

L
Convolution of 

True parameter distribution +
Measurement error & analysis method

Confidence intervals

Histogram of best fits

Cumulative distribution

Clean solution:
Model population distribution (HBM)

Meaning?
Upper limits?

Buchner+17a



Sampling



Bayesian posterior

VolumeDensity

Probability mass

Find regions with high 
probability mass

θ

LL

Idea: Sample parameter solutions 
proportionally to their probability

For example with a grid



Posterior grid



Posterior grid



Bayesian posterior

θ

P

parameter solutions weighted by their 
probability

Credible intervals

Definitions:

Density  cumulative  quantiles→inf but pn=λ →inf but pn=λ

Highest Density Intervals

Borders (upper limits)



  



  



  

Curse of dimensionality
● kd grid  infeasible→inf but pn=λ
● Sample θ is true parameter

 θ is true parameter1  θ is true parameter2 θ is true parameter3 ….
 w1 w2 w3 …. 

● Techniques:
– Importance sampling
– MCMC
– Nested sampling

(Posterior chains)



  

Using posterior chains
● Posterior chain

 θ is true parameter1  θ is true parameter2θ is true parameter3 ….

● Find regions with high prob
● Compute prob. of regions
● Posterior predictions
● Derived quantities

P

q
10

     q
50

      q
90

P
P(x>4)= 
sample fraction

F, z  L, z→inf but pn=λ



Importance sampling

θ

P

Draw from proposal distribution Q

Weigh by Q( )/P( |D)θ is true parameter θ is true parameter

 →inf but pn=λ weighted  chainθ is true parameter

Advantages: 
  - Efficient in low-d
  - Parallelisable
  - Can integrate parameter space

Disadvantages
  - Need to find good proposal (VB)
  - Poor scaling to 10-20d
  - Poor performance if proposal is 
bad (variance indicator)



Markov Chain Monte Carlo

θ

LL

Starting point θ

Loop forever:
θ’ = Normal(θ, sigma_p)
if P(θ’|D)/P(D)/P(θ|D)/P(D) > U():

θ = θ’
add θ to chain

x



MCMC

θ

LL

x

Emerging behaviour:

Starting point θ

Loop forever:
θ’ = Normal(θ, sigma_p)
if P(θ’|D)/P(D)/P(θ|D)/P(D) > U():

θ = θ’
add θ to chain



MCMC proposals
● Metropolis + Random Walk
● Goodman-Weare (emcee)

● HMC (Hamiltonian Monte Carlo)

 →inf but pn=λ animation

https://chi-feng.github.io/mcmc-demo/app.html

Random walk, HMC  

https://chi-feng.github.io/mcmc-demo/app.html


MCMC proposals
● Metropolis Random Walk

– Adv: simple
– Disadv: poor mixing

● Affine-invariant ensemble
– Adv: auto-tuning for gaussian L
– Disadv: poor mixing in bananas, collapses in 

high-d (Huijser+15)

● HMC (Hamiltonian Monte Carlo)
– Adv: tunes itself to surface
– Disadv: need gradients of models

Goodman & Weare (2010)
emcee



MCMC stopping
● MCMC theory: n inf→inf but pn=λ
● Trace plots
● Autocorrelation 

length
● Convergence tests

– Detect if unreliable
– Gelman-Rubin 

diagnostic
– (many more)

(by Eric Ford)

Phases:
Identification

Mixing

(burn-in) 



Global 
optimization



Global maxima
L



Escaping local maxima: strategies

● Multiple random start 
positions

– Augment local techniques

● Make surface easier

– Tempering/Annealing

● Walker population

– GW

– Genetic algorithms (DE)

L



Genetic algorithms
Cross-over

Initial population

Mutation Selection

Offspring

vs

New generation

With fitness 
function
(here: L)



Genetic algorithms
● Differential evolution

● Zooms into highest regions
Advantages:

- Global 
- Robust to degeneracies, auto-tuning proposal
- Works in high-d & non-continuous parameters

Disadvantages:
- Some tuning parameters
- stopping criterion may not be meaningful
- Does not sample (only best-fit)

moncar



Model comparison



Model comparison
● Empirical models

– Information content
– Prediction quality

● Component presence
– Regions of practical 

equivalence

● Physical effects
– Bayesian model comparison
– Priors often well-justified

https://arxiv.org/abs/1506.02273
Betancourt (2015)

Buchner+14

https://arxiv.org/abs/1506.02273


Information criteria
● Akaike information criterion
● Is more complex worth storing?

AIC = 2 * d – 2 * L
max

AIC = 2 * d + CStat

Akaike (1973)

Advantages: 
  - rooted in information theory
  - independent of prior

Disadvantages:
  - No uncertainties, thresholds unclear
  - …



  



  

Punishing prediction diversity

Flexible model Inflexible model Data

L high, V tiny L medium, V medium

(not number of parameters)



  

Posterior 
odds ratio

Prior
odds ratio

Bayes
factor



  

Buchner+14



Global 
sampling



  



  



  

Missing ingredients

● MCMC: Insert tuned transition kernel
● NS: Insert constrained drawing algorithm

● General solutions: MultiNest, MCMC, HMCMC, 
Galilean, RadFriends, PolyChord



  
Animation:

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,standard
(via chi-feng.github.io)

https://johannesbuchner.github.io/mcmc-demo/app.html#RadFriends-NS,standard


  



  

Posterior 
odds ratio

Prior
odds ratio

Bayes
factor



  

Buchner+14



  

Calibrating model decisions
● Model probabilities  decisions→inf but pn=λ
● False decision rate (false positives/negatives)

– Monte Carlo simulations (parametric 
bootstrap)

Buchner+14



  

Calibrating model decisions
Buchner+14

False negatives 
Non-decisions

wabs input

powerlaw input

wabs input

powerlaw input

Advantages:
- Get rid of parameter prior dependences
- Have frequentist properties of Bayesian method
- Completely Bayesian treatment + decisions

Disadvantages:
- Can be computationally expensive



  

Frequentist properties of 
Bayesian methods

● Make decisions
– Is parameter greater than C?
– Is this model “better” than the other?

● Parametric bootstrap
– Monte Carlo simulation allow arbitrary 

complexity



  

Model comparison
Test model in isolation? PPC

Parametric bootstrap

Compare physical models or
empirical descriptions?

yes

no, relative

Information content (AIC)
Prediction quality (Cross validation)

empirical

physical 
effects

Additive component
Parameter estimation
Region of equivalence

Bayesian model comparison

yes

no

Bayesian model comparison



Agenda
● Yesterday:

– Basic statistics, problem setup
– Parameter estimation methods, credible & 

confidence intervals
– Model comparison methods
– Visualisations

● Today:
– Extended sources, calibration
– Stacking information
– Discussion & Questions
– Practical pointers & Wrap-up

● Not covered: 
– Tools
– Pile-up & variability

Spectroscopy
 + lower E
 + higher E
 + imaging
 + time
Outside spectroscopy



  

Spectra with 
few counts



Spectra with few counts
● Are nothing special
● Poisson likelihood + good 

background handling
● 0 counts

● Think in terms of allowed regions

N

T



L, N
H
 from X-ray spectrum

Scattered Powerlaw component

CTK flat spectrum + 
FeK line



L, N
H
 from X-ray spectrum

Probability cloud



  

Intrinsic
parameter 

distributions



  

Example
● Measurement gave

x1 = 4+-1
x2 = 5+-0.1

● Generate 100 samples for each

100xN matrix of x



  

Example
● Evaluate model

F(x)

100xN matrix of F

100xN matrix of x



  

Example
● Sum probabilities

● Multiply probabilities

● Then try out other model parameters

100xN matrix of F N 
vector

L



  

Graphic explanation
P(x)

x

Measurement 
error

F(x)

Population distribution
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Graphic explanation
P(x)

x

Measurement 
error

F(x)

Population distribution



  

Behaviour
● Generate from 6+-2 with 

measurement errors
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Practical pointers



  

Practical advice
● You can do this in any package!
● State what you are doing
● CStat (Poisson)
● Background with functions (check fit)
● Visualise, visualise, visualise
● Show posterior distributions & 

fits in data space
● Vary priors & assumptions
● Use nested sampling, MCMC with care
● Make simulations
● Ask for help

isis, sherpa, spex, xspec, 3ml, ...



  

Contact points for questions
● Ask a colleague
● Astrostatistics Facebook group
● XSPEC Facebook group
● @MPE

– J Michael Burgess
– Johannes Buchner


