Spectral fitting:

- Calibration uncertainties
- Randomization

Spectral fitting methods workshop

Spectral fitting:

- Calibration uncertainties
- Randomization

Spectral fitting methods workshop

News: The 14th IACHEC in

Mission Links

Astrosat

Chandra

INTEGRAL

MAXI

NITCER

Insight-HXMT

2019

Shonan Village in Japan was a success. Talks can be found at

NEWS WORKING GROUPS MEETINGS WIKI PAPERS RESOURCES SOURCE DATABASE

International Astronomical Consortium for High Energy Calibration

14th IACHEC meeting, 20-23 May 2019, Shonan Village Center (Japan)

Welcome to the IACHEC page

IACHEC

The IACHEC aims to provide standards for high energy calibration and supervise cross calibration between different missions. This goal is reached through working groups, where IACHEC members cooperate to define calibration standards and procedures. The scope of these groups is primarily a practical one: a set of data and results (eventually published on refereed journals) will be the outcome of a coordinated and standardized analysis of references sources ("high-energy standard candles"). Past, present and future highenergy mission can use these results as a calibration reference.

Presentation on the IACHEC structure and scope (Lorenzo Natalucci, 1st COSPAR Symposium, 11 November 2013)

	MAGEN
Working Groups	NuSTAR
 Methodology 	Swift
Calibration Statistics	XMM-Newton
Detectors and Background	
Contamination	Resource Links
Communication	
Coordinated Observations	HEASARC
Heritage	SIMBAD
High Resolution	NED
Timing	ADS
-	ArXiv
 Standard Candles 	
Clusters of Galaxies	Search This Site
Non-Thermal SNR	
Thermal SNR	Search Go!
White Dwarfs and Isolated	
Neutron Starts	
@ 2000 V- d'-	- Russeller & Method Contacent Read on a distant but & Mildowd
© 2008 Vadim Burwitz & Matteo Guainazzi Based on a design by A. Viklund	

Spectral fitting methods workshop

Plucinsky et al. 2017 (A&A 597)

Spectral fitting methods workshop

MPE, Germany, 2019 September 24 - 25

± 20%

General properties of the ARF and RMF

ARF: "Ancillary Response File", RMF: "Redistribution Matrix File"

Spectral fitting methods workshop

Residuals obtained with xmmsas RMF

Spectral fitting methods workshop

MPE, Germany, 2019 September

spectral models:

1E 0102

IACHEC model

with **only 1 free parameter**: global normalization

+ gain fit (offset)

RX J1856 **TBabs * bbodyrad** with **all parameters** from Chandra (no free parameter!) $nH == 7.25 \ 10^{-19} \ cm^{-2}$ $kT == 62.4 \ eV$ $norm == 1.58 \ 10^{5}$ + gain fit (offset)

Residuals obtained with parameterized RMF

Spectral fitting methods workshop

MPE, Germany, 2019 September

spectral models:

1E 0102

IACHEC model

with **only 1 free parameter**: global normalization

+ gain fit (offset)

RX J1856 **TBabs * bbodyrad** with all parameters from Chandra (no free parameter!) nH == 7.25 10⁻¹⁹ cm⁻² kT == 62.4 eV norm == 1.58 10⁵

+ gain fit (offset)

Spectral fitting:

- Calibration uncertainties
- Randomization

Calibration uncertainties, especially in the RMF, are generally not taken into account in spectral fits!

Spectral fitting methods workshop

Spectral fitting:

- Calibration uncertainties
- Randomization

Spectral fitting methods workshop

Fit to RXJ 1856 (rev 2995, SW, thick)

Spectral fitting methods workshop

Fit to RXJ 1856 (rev 2995, SW, thick)

Spectral fitting methods workshop

Fits to RXJ 1856 (rev 2995, SW, thick) with the same RMFs and ARFs and the same spectral model, spectra produced in (almost) the same way with the same SAS version (20141104)

difference is probably caused by the randomization within the PHA channels

✓ numerical experiment: process the same data "identically" 100 times ...

Spectral fitting methods workshop

Pairwise comparison of PI spectra from repeated SAS

RXJ 1856, SW, thick filter, rev 2995, statistical errors of both spectra considered

worst agreement

best agreement

Spectral fitting methods workshop

Pairwise comparison of PI spectra from repeated SAS

1E0102, SW, medium filter, rev 3000, statistical errors of both spectra considered

Spectral fitting methods workshop

Reason for randomziation

General problem: how to rebin binned data ?

urs frequently:

pectral rebinning: emporal rebinning: patial rebinning:

gain & CTI corrections folding pulse profiles projection of pixels, image overlays

Spectral fitting methods workshop

Simple example: 400 counts in 10 bins, uniformely

distributed

Spectral fitting methods workshop

Simple example: 400 counts in 10 bins, uniformely

distributed

Spectral fitting methods workshop

with a constant factor (e.g. 100), perform the randomization,

and divide the resulting counts by that factor

Spectral fitting methods workshop

MPE, Germany, 2019 September 24 – 25

with a constant factor (e.g. 100), perform the randomization,

and divide the resulting counts by that factor

Spectral fitting methods workshop

MPE, Germany, 2019 September 24 – 25

with a constant factor (e.g. 100), perform the randomization,

and divide the resulting counts by that factor

Spectral fitting methods workshop

MPE, Germany, 2019 September 24 – 25

with a constant factor (e.g. 100), perform the randomization,

Spectral fitting methods workshop

with a constant factor (e.g. 100), perform the randomization,

Spectral fitting methods workshop

with a constant factor (e.g. 100), perform the randomization,

and divide the resulting counts by that factor

Spectral fitting methods workshop

MPE, Germany, 2019 September 24 – 25

Running the XMM SAS 100 times is neither efficient nor elegant

Is there a better way ?

Probably yes ..

Spectral fitting methods workshop

A novel way of processing X-ray data ?

From randomization to probability distributions ...

100 random values per PHA channel 10 sub-bins within each PHA channel

1 000 000 random values per PHA channel 10 sub-bins within each PHA channel

Spectral fitting methods workshop

A novel way of processing X-ray data ?

From randomization to probability distributions ..

.. and from PHA channels to PI channels ..

.. for all valid patterns

Spectral fitting methods workshop

A novel way of processing X-ray data ?

From randomization to probability distributions ..

.. and from PHA channels to PI channels ..

.. for all valid patterns

Spectral fitting methods workshop

A novel way of accumulating an X-ray spectrum

Spectral fitting methods workshop

Immediate benefits of propagating probability distributions

no randomization necessary 🔽 full reproducibility of results

Spectral fitting methods workshop

Additional benefit: possibility of taking spectral gradients into account

 distortions of the probability distributions can be considered when a spectrum is accumulated

 \checkmark this might even improve the spectral

Spectral fitting methods

Additional benefit: possibility of taking spectral gradients into account

 ✓ distortions of the probability distributions can be considered when a spectrum is accumulated

\checkmark this might even improve the spectral

Spectral fitting methods workshop

Randomization appears as an approximation to propagating probability distributions

Drawbacks of the randomization method:

- unnecessarily large jitter in the data
- unnecessarily large χ^2 values
- complications in reproducing the results
- in extreme cases the scientific interpretation may depend on the random number generator

All these drawbacks can be avoided by the method of propagating probability distributions

additional possible benefits:

- better determination of spectral parameters
- spectral gradients can be taken into account

Products would be consistent with existing spectral fitting packages and could be made

fully backwards compatible

Spectral fitting methods workshop

Spectral fitting:Calibration uncertainties

Randomization

Randomization appears as an approximation to propagating probability distributions and may have a non negligible effect on spectral fits!

Spectral fitting methods workshop