

The Wide Field Imager for the Athena X-ray Observatory

Arne Rau

(Athena/WFI Project Scientist, MPE - on behalf of the WFI Team)

The Hot and Energetic Universe - Science Theme for ESA's L2 Mission

The Athena Observatory

Willingale et al, 2013 arXiv1307.1709

06/17/2014

For more information please listen to talks in the Plenary Session on Thursday

The Hot and Energetic Universe & The Athena Mission Kirpal Nandra

The X-ray Integral Field Unit Didier Barret

Measurement Principle

06/17/2014

Active pixel sensor

Depleted P-channel Field Effect Transistor

p-FET on depleted n-bulk

 signal charge collected in potential minimum below FET channel

combined function of sensor & amplifier

- low capacitance (20 fF) and noise
 excellent spectroscopic performance
- charge storage capability
 - readout on demand
- back-illuminated, fully depleted
 - excellent quantum efficiency

Wide Field mager

readout sequence

- 1st measurement: signal + baseline
- clear: removal of signal charges
- 2nd measurement: baseline
- difference = signal

matrix organisation

- common bulk & back contact
 - thin homogeneous entrance window
 - 100% filling factor
- row connection of ext. gate + reset
- column connection of r/o nodes (drain)
 - windowing option

operation philosophy

- one active row
 - fast, parallel processing
- all other rows turned off
 - minimum power consumption
 - signal charge integration

06/17/2014

Problem: photon hits during signal sampling $\rightarrow E_{meas}$ (<E_x)

Step 1: gateable DEPFET

- Electronic shutter built-in in each pixel
 - suppresses signals during sampling period
 - 10 x lower background

Problem: e-shutter \rightarrow dead time

- Step 2: gateable DEPFET with intermediate storage region
 - $-e^{-}$ are stored for later processing
 - low background & dead time

Wide Field mager

ATHENA

Advantages wrt CCD

- no charge transfer
 - » less sensitive to radiation damage
 - » faster readout
 - » flexible windows

DEPFETs developed for

- SIMBOL-X, XEUS, IXO, Athena prototypes
- MIXS on ESA's BepiColombo

Conceptual Design

06/17/2014

Focal Plane Layout

WFI: Wide field survey power + high count-rate/timing capability

- FoV = 40 arcmin
- fast + 4 large DEPFET APS

Fast chip:

- 256 x 256 pixels; = 7.7 arcmin
- Pixel: 100 x 100 μm² (= 1.8 arcsec)
- on-axis PSF = 5 arcsec → oversampling: x 2.8
- two hemisphere readout
- gateable, intermediate storage DEPFET

Large chips:

- 448 x 640 pixels
- Pixel: 130 x 130 μ m² \rightarrow 58 x 83 mm²
- non-gateable DEPFET

Instrument Performance

Effective Area (on-axis)

Survey Power

simulation of CDFS

(Nandra et al 2013)

06/17/2014

Spectral Resolution

BH Growth from Compton Thick AGN

⁽Georgakakis, Carrera et al 2013)

IR EXTRATERRESTRISCHE PHYS

High Count Rate Capabilities

for 0.2 Crab @ 6.4keV: ~30 cm²: XMM, Chandra ~250 cm²: ASTRO-H ~2500 cm²: Athena/WFI

for variable sources: no compensation from longer observations

relevant Metric: A_{eff} x fraction of time the detector registers events

⁽simulations by C. Schmid/ECAP)

Summary

DEPFET Active Pixel Sensor based wide field camera

combines wide field survey power with high count rate and timing capabilities

designed to address question of the Hot and Energetic Universe science theme

Proto-Consortium lead by MPE with Partners in Germany, UK, Poland, Austria, Denmark, Italy, France, (US)

Energy Range	0.1 - 15 keV
Field of View	40` x 40` (baseline) 50` x 50` (opt.)
Central DEPFET Sensor	Format: 256 x 256 Pixel → 26 x 26 mm ² Pixel size: 100 x 100 µm ² (1.8")
Outer DEPFET Sensors	448 x 640 Pixel (baseline) → 58 x 83 mm ² 576 x 768 Pixel (opt) → 75 x 100 mm ² Pixel size: 130 x 130 μ m ² (2.3")
Angular resolution (on-axis)	5" (3") \rightarrow oversampling by 2.8 (1.7)
Quantum efficiency (depend. optical blocking filter)	277 eV: 24% 1 keV: 87% 10 keV: 96%
Energy resolution	FWHM@6keV < 150 eV
Time resolution central sensor Window mode (16 rows)	320 μs goal (tbv): 160μs (=6.3kf/s) 20 μs goal: 10 μs (100.000 frames/s)
Time resolution outer sensor	1.5 ms (40` FoV) 1.9 ms (50` FoV)
Count rate capability	0.5 Crab: 88% throughput; 3% pile-up 1 Crab: 79% throughput; 6% pile-up