RESOLVING THE POPULATION OF GALACTIC ULTRA-COMPACT BINARIES Arne Rau (MPE Garching)

> + G. ROLEOFS (CFA), S.KULKARNI, S. PHINNEY, M.SALVATO, R.QUIMBY, M.KASLIWAL (CIT)

KNOWN SAMPLE

22 SOURCES (COMPARED TO THOUSANDS OF CVS) EXTREMELY HETEROGENEOUS SAMPLE SPECTRUM VARIES WITH P_ORB

KNOWN SAMPLE

22 SOURCES (COMPARED TO THOUSANDS OF CVS) EXTREMELY HETEROGENEOUS SAMPLE SPECTRUM VARIES WITH P_ORB

KNOWN SAMPLE

22 SOURCES (COMPARED TO THOUSANDS OF CVS) EXTREMELY HETEROGENEOUS SAMPLE SPECTRUM VARIES WITH P_ORB

MOTIVATION: LISA VERIFICATION

(Roelofs et al. 2007)

• VERIFICATION SOURCES FOR LISA $(10^{-4} - 1Hz)$ • AS MANY AS 11000 RESOLVABLE WITH LISA • $h=\Delta L/L$ • FOREGROUND "NOISE"

 $\overline{\sim}$ ▼ HP Lib V803 Cen AM CVn ĩÇR Boo 22 \Box GP Còm бo 23 24 -3.5 -3 -2.5-2 log f (Hz)

MOTIVATION: ASTRO-LABS

MERGING WDS: CANDIDATES FOR SN IA PROGENITORS
SN IA: "CASUALTIES" WHILE AM CVN: "SURVIVORS"
INFLUX (DETACHED) VS OUTFLUX (AM CVN)
CONSTRAINS ONSET OF ROCHE-LOBE OVERFLOW

SDSS DR6 COLOR-SELECTION

FIRST HOMOGENEOUSLY SELECTED SAMPLE FROM SDSS SPEC DATABASE (6 SOURCES) SUGGESTED ~50 SYSTEMS IN PHOTOM. DATABASE

• EMPTY COLOR-SPACE (1300 OUT OF 250MILLION

SOURCES)

Model	$\begin{array}{c} \text{Modelled} \ \# \\ (N_{\text{spec}}') \end{array}$	Total in SDSS-I $(N_{\rm phot})$	$\stackrel{\text{Modelled } \rho_0'}{(\text{pc}^{-3})}$	Observed ρ_0 (pc ⁻³)	Observed σ (deg ⁻²)
Optimistic	107 12	52	2.6×10^{-5}	1.5×10^{-6}	6.5×10^{-3}
Pessimistic		67	6.2×10^{-6}	3.2×10^{-6}	8.4×10^{-3}
He star only, optimistic	$ \begin{array}{r} 16 \\ 11 \\ 91 \\ 0.85 \end{array} $	67	8.8×10^{-6}	3.4×10^{-6}	8.4×10^{-3}
He star only, pessimistic		68	5.9×10^{-6}	3.3×10^{-6}	8.5×10^{-3}
WD only, optimistic		50	1.7×10^{-5}	1.1×10^{-6}	6.2×10^{-3}
WD only, pessimistic		57	2.4×10^{-7}	1.7×10^{-6}	7.1×10^{-3}

Table 1. Observed space densities of AM CVn stars for different assumptions regarding their populations; the observed ρ_0 is obtained by multiplying the modelled ρ'_0 by $N_{\text{spec}}/N'_{\text{spec}}$ where $N_{\text{spec}} = 6$. 'Optimistic' and 'pessimistic' models from Nelemans et al. (2001) with the Galactic model of Nelemans et al. (2004). The total N_{p} is the number of emission-line AM CVn stars in the SDSS-I photometry down to $g_{\text{max}} = 21$. The measured surface density σ down to g = 21 holds for Galactic latitudes $b \gtrsim 30^{\circ}$. The observed ρ_0 and σ are accurate to an estimated factor of 2.

Total number of AM CVn stars in Sloan: \geq 50

SDSS DR6 COLOR-SELECTION

FIRST HOMOGENEOUSLY SELECTED SAMPLE FROM SDSS SPEC DATABASE (6 SOURCES)
SUGGESTED ~50 SYSTEMS IN PHOTOM. DATABASE
EMPTY COLOR-SPACE (1300 OUT OF 250MILLION SOURCES)

SDSS DR6 COLOR-SELECTION

FIRST HOMOGENEOUSLY SELECTED SAMPLE FROM SDSS SPEC DATABASE (6 SOURCES)
SUGGESTED ~50 SYSTEMS IN PHOTOM. DATABASE
EMPTY COLOR-SPACE (1300 OUT OF 250MILLION SOURCES)
HE EMISSION LINES STAND OUT IN LOW S/N SPECTRA

• 98% OF POPULATION AT P-ORB>30MIN

OBSERVATIONS

LOW-RES LOW-SN SUFFICIENT
6 NIGHTS DBSP (4 IN 2008B, 2 IN 2009A)
300/3990 + 316/7500 [~8ANGST. FWHM]
19.5MAG < g < 20.5MAG
SUPPLEMENTED BY OBSERVATIONS AT: 1.5M FLWO,
2.5M INT, 4.2M WHT, 6.3M MMT, 8M GEMINI-N

FIRST RESULTS

• 195 SOURCES TOTAL

FIRST RESULTS

• 195 SOURCES TOTAL

1

THE 1ST P200 DISCOVERED AMCVN BINARY

FOLLOW-UP WITH KECK/LRIS (65 SPECTRA IN TWO NIGHTS) P_ORB = 48.31+/- 0.08MIN

(Rau et al 2009)

POPULATION STUDY - PRELIMINARY RESULTS

1 AM CVN OUT OF 195 WITH P200
2 OUT OF ~400 TOTAL
~15 PREDICTED FROM SDSS & POPULATION MODELS

IDEAS:

WD-WD COUPLING UNDERESTIMATED AND ONLY FEW SURVIVE RLOF
NO COUPLING AT ALL, HE-STAR CHANNEL DOMINATES
NOT ALL LONG P_ORB SHOW EMISSION LINES (E.G. SEMI-DEGENERATE DONOR COOLS, CONTRACTS, STOPS MASS TRANSFER)
SUBSTANTIAL FRACTION MAY UNDERGO .1A EXPLOSION

LISA PREDICTIONS:

NELEMANS ET AL. 2004 -> 11000 PER YEAR
 ROELOFS ET AL. 2007 -> 1000 PER YEAR
 P200+ -> ~100 PER YEAR ?

