

Gamma-Ray Bursts: A Population Study

Arne Rau

Thesis Committee: Dr. J. Greiner (Advisor) Prof. G. Hasinger Dr. G. G. Lichti

GRBs in a nutshell

Discovery by Vela 4

Afterglow emission

Supernova connection

18

Thesis/talk overview

Population 1: GRBs with the Anti-Coincidence Shield SPI-ACS

[AR, von Kienlin, Hurley & Lichti, A&A, 438, 1175 (2005)]

SPI-ACS as **GRB** Detector

91 Bi₁₂GeO₂₀ (BGO) crystals

19 SPI-Ge detectors

- omnidirectional FoV
- ~80keV 10MeV
- 50ms time resolution
- no spectral/spatial resolution
- localization via triangulation

The sample of candidate GRBs (Oct 2002 - Jan 2005)

SPI-ACS Gamma-Ray Bursts: January 2003

						~			· ·				
#	DATE	TIME	SIGMA	т ₉₀	T ₅₀	CINT	C _{MAX}	V/V _{MAX}	VAR	CONF.			COMMENT
		UTC		[S]	[S]	[KCNTS]	[KCNTS]						
18	2003-01-01	20-43-32	42	0.65±0.05	0.25±0.05	16±0.7	8.2±0.2	0.15	0.01±0.01	UKH	JPEG	ASCII	
19	2003-01-02	15-47-43	25	7.3±0.4	4.4±0.5	32±2	3±0.2	0.33	0.18±0.01		JPEG	ASCI	
20	2003-01-02	23-18-59	36	12±0.8	2.9±0.1	46±3	4.6±0.2	0.19	0.23±0.01	UKR	JPEG	ASCII	
21	2003-01-05	14-34-06	72	0.9±0.05	0.3±0.05	30±0.9	12±0.2	0.07	0.07±0.01	MKR	JPEG	ASCII	
22	2003-01-07	08-59-41	28	0.15±0.05	0.05±0.05	5.6±0.3	5.4±0.2	0.28			JPEG	ASCII	
23	2003-01-09	09-37-37	28	0.7±0.5	0.05±0.1	5.3±0.5	4.8±0.2	0.28		U	JPEG	ASCII	
24	2003-01-10	09-39-28	18	0.05±0.1	0.05±0.05	2.6±0.2	2.7±0.2	0.54		К	JPEG	ASCII	
25	2003-01-15	06-24-29	50	3+33	33+2	190+10	2 5+0 2	0 12	0 31+0 01	IIMKHR	IPEG	ASCII	

Origin of events with T₉₀ < 0.25s

Population 2: Afterglows and Hosts: GRB 030528

[AR, Greiner, Klose & GRACE, A&A, 427, 815 (2004) AR, Salvato & Greiner, A&A, 444, 425, (2005)]

Afterglow discovery

GRB 030528 - an X-ray Flash

 $\overline{E_{\text{peak,obs}}} = 32\pm5 \text{ keV} \rightarrow \text{X-ray Flash} \text{ (XRF)}$

XRFs similar to LGRBs except lower peak energy

Models: (e.g. high baryon loading, wide opening angle jet, off-axis bursts, high redshift)

distance scale important, but only two XRFs with redshift (z=0.251, z=2.66)

Host spectroscopy with VLT/FORS2

• $E_{peak,rest} = 60 \text{ keV}$ • Z= • actively star forming galaxy (20 M_{\odot} yr⁻¹) • matrix

• Z=10-60% Z_o • mass: 2x10¹⁰ M_o

Population 3: Orphan Afterglows with WFI

[AR, Greiner & Schwarz, A&A in press (2006)]

On-axis and off-axis orphan afterglows

(Nakar & Piran 2003)

Strategy, Instrumentation

(Fox et al 2003)

- WFI MPG/ESO 2.2m
- 12 deg² in up to 25 nights (700 images, 420s)

• R<23 (10o)

- IRAF/WIFIX pipeline
- Differential photometry (ΔR>0.75 mag)
- 12000 candidates
 ⇒ 4 transient sources

Candidate transients - #1

- $\Delta R \sim 1.5$ mag in 2 days
- flare star, supernova, afterglow ?
- not associated with a triggered burst

Afterglow detection efficiency

 $\begin{array}{cccc} F_R & \varpropto t^{-\alpha 1} & : t \leq t_b & 0.4 < \! \alpha_1 <\! 1.8; \, 0.4 \, \text{days} <\! t_b <\! 4 \, \text{days} \\ & \varpropto t^{-\alpha 2} & : t > t_b & 1.4 <\! \alpha_2 <\! 2.8 & (\text{Zeh et al. 2005}) \end{array}$

 $N_{MC} \propto P^{-1} \sim 10^7 (R_{lim} = 23)$

Collimation

 $\begin{aligned} f_c &= N_A / N_\gamma < N_{MC} / N_\gamma < N_{MC} / (N_{\gamma,obs} \cdot f_\gamma \cdot f_D \cdot f_S) < 12500 \\ f_c &< f_B < 75...500 \text{ (Guetta et al. 2005; Frail et al. 2001)} \end{aligned}$

Summary

prompt γ-emission: INTEGRAL SPI-ACS	 burst trigger pipeline web- and catalogue maintenance 	 very short events from cosmic ray interaction deficit of SHB
	• analysis and interpretation	• AR et al. 2005a
afterglows and host galaxies: GRB 030528	 PI ESO/VLT proposal imaging & spectroscopy data reduction 	 afterglow discovery redshift and host properties
	• analysis and interpretation	• AR et al. 2004, 2005b
orphan afterglows: Wide-Field Imaging Survey	 pipeline for data reduction and analysis interpretation and Monte Carlo simulations 	 pilot survey 4 transient sources <i>AR et al. 2006</i> Hubble/Chandra fellow application

[Jan 25 2006]

20/18

T₉₀ **Distribution vs BATSE**

confirmed: ~1/10

[Jan 25 2006]

21/18

Origin of events with $T_{90} < 0.25s$

Scenario: cosmic ray interactions

X-ray Flashes - late

- XRFs/XRRs/LGRBs form continuum
- X-ray, optical, radio afterglows
- underlying supernova (Fynbo et al. 2003, Soderberg et al. 2005)
- late type host galaxies (e.g. Bloom et al. 2003)

X-ray Flashes - prompt

- BeppoSAX WFC (Heise et al. 2001)
- similar to LGRBs except E_{peak}
- HETE-2 observer frame classification:

 $\log(S_x(2-30 \text{ keV}) / S_y(30-400 \text{ keV}))$ (Sakamoto et al. 2004)

X-ray Flashes - models

- high baryon loading in the ejecta (e.g. Dermer et al. 1999)
- wide opening angle jet
- low contrast between the bulk Lorentz factors of colliding relativistic shells (Barraud et al. 2005)
- off-axis bursts (e.g. Yamazaki et al. 2002)
- high redshift (e.g. Heise et al. 2001)

Distance Scale is important:

XRF 020903: z=0.251 (Soderberg et al. 2004) XRF 030429: z=2.66 (Jakobsson et al. 2005)

ESO proposal for spectroscopy of host of XRF 030528 written and accepted

030528 in the rest frame

⇒Do we need the XRF/XRR/GRB classification ?
⇒ if yes: then in the rest frame !

 \Rightarrow What about short XRFs ?

Summary

SPI-ACS: • trigger software development

- $T_{90} < 0.25$ s population \Rightarrow cosmic ray interactions
- 236 GRBs $(T_{90} \ge 0.25s) \Rightarrow 1 \text{ every 3 days}$
- defizit of short duration GRBs

GRB/XRF 030528:

- discovery of near-IR afterglow and host galaxy
- ESO/VLT proposal for host study written+accepted
- spectroscopic redshift (z=0.782)

Hier tabelle!!

[Jan 25 2006]

30/18

Host Properties

- metallicity from emission lines: $R_{23} = log(([OIII]+[OII])/H_{\beta})$ 0.1<Z<0.6
- absolute magnitudes

- stellar mass: $9{\cdot}10^9~M_{sun}$ (Brinchman & Ellis 2000) to $2{\cdot}10^{10}~M_{sun}$ (Bell et al. 2005)

• size: ~11 kpc

Summary - 3

- R-band survey for orphan afterglows (12 deg² in up to 25 nights, R<23)
- 4 candidate transients (1x CV, 1x flare star, 1x dwarf nova, 1?)
- "ideal" survey: every two nights over 150 nights of 50 deg² (330, 2500) \Rightarrow f_c < 500 (75, 10)

Summary - 2

- discovery of near-IR afterglow and host galaxy of GRB/XRF 030528
- z=0.782
- observer frame XRF ⇒ rest frame XRR
- rest frame classification scheme required (if at all)
- Do we expect also short XRFs ?

Summary

• R-band survey for orphan afterglows (12 deg² in up to 25 nights, R<23)

- 4 candidate transients (1x CV, 1x flare star, 1x dwarf nova, 1?)
- "ideal" survey: every two nights over 150 nights of 50 deg² (330, 2500) \Rightarrow f_c < 500 (75, 10)
- 236 GRBs ($T_{90} \ge 0.25s$) \Rightarrow 1 every 3 days (179 IPN confirmed)
- $T_{90} < 0.25$ s population with different origin than $T_{90} \ge 0.25$ s population \Rightarrow cosmic ray interactions
- discovery of near-IR afterglow and host galaxy of GRB/XRF 030528 at z=0.782

Intensity Distribution

	logN - logP	<v v<sub="">max></v>
BATSE	(Fishman et al. 1994)	0.34
T ₉₀ >2.5s	-1.1	0.26
$0.25s \le T_{90} \le 2.5s$	-1.1	0.31
T ₉₀ <0.25s	-2.3	0.48

Host Galaxy - Photometry

 $V = 21.9 \pm 0.2$ R = 22.0 ± 0.2 I = 21.3 ± 0.3 J = 20.8 ± 0.1 H < 20.3 K = 19.9 ± 0.7

SED consistent with late type galaxy at z<4

Candidate transients - #2

- rise: $\Delta R=1.9$ mag
- decline: $\Delta R=0.7$ mag in 20 min
- flare stare, afterglow ?

- $\Delta R=2.4$ mag in ~2 days
- faint ROSAT source
- dwarf nova ?

030528 in the rest frame

The giant flare of SGR 1806-20 on Dec 27, 2004

(Mereghetti, Götz, von Kienlin, AR et al. 2005, ApJL in press)

(Mereghetti et al. astro-ph/0411695)

- increasing level of activity
- two strong clusters with 10⁻⁴ erg cm⁻² on Oct 5, similar to SGR 1900+14 three months before giant flare in 1998 (Golenetskii et al. 2004)

Effective Area for Dec 27, 2004 flare

- GEANT simulation (by G. Weidenspointer)
- known spectral shape: conversion factor 1 SPI-ACS count $s^{-1} \sim 4.3 \times 10^{-10} \text{ erg cm}^{-2} \text{ s}^{-1} (\text{kT}=30 \text{keV})$

SPI-ACS light curve

- precursor: S (kT_{br} =15keV, E>80keV) = 4.4x10⁻⁶ erg cm⁻²
- initial peak: 99% dead time

Light curve decay

15-400s: $F \propto e^{-t/138s}$ S (kT_{br}=30keV) = 2.6x10⁻⁴ erg cm⁻²

Late time component

[Jan 25 2006]

44/18

Afterglow photometry

		expected [mag]	observed [mag]	
	H	19.5	20.6 ± 0.3	$A_V > 2 mag$
an 25 20)00]	20.4	$\textbf{20.3} \pm \textbf{0.4}$	2

Variability

• formulation of Reichart et al. (2001)

Effective Area

[Simulations by P. Jean]

Origin of events with $T_{90} < 0.25s$

/18

Short Events

\mathbb{N} \mathbb{O}^{2} $\mathbb{$

[Jan 25 2006]

52/18

Optical/near-IR Afterglow Observations

Kinematics: signatures of absorbing clouds from expanding shells (Δv=2400 km/s) around massive Wolf Rayet Star

[Jan 25 2006]

55/18

Star Formation

[OII]: SFR(M_s yr⁻¹) = $1.4 \pm 0.4 \cdot 10^{-41}L_{[OII]}$ (Kennicut 1998) SFR(M_s yr⁻¹) = $8.4 \pm 0.4 \cdot 10^{-41}L_{[OII]}$ (Rosa-Gonzalez 2002)

UV: SFR(M_s yr⁻¹) = $1.4 \pm 0.4 \cdot 10^{-28} L_{v,UV}$ (Kennicut 1998) SFR(M_s yr⁻¹) = $6.4 \pm 0.4 \cdot 10^{-28} L_{v,UV}$ (Rosa-Gonzalez 2002)

		SFR	SSFR	SFR
		[M _s yr ⁻¹]	[M _s yr ⁻¹]	[M _s yr ⁻¹ M _s ⁻¹]
[OII]	K98	6 ± 2	12 ± 3	2.10-10
	RG02	37 ± 4	74 ± 6	12.10-10
UV	K98	4 ± 1	8 ± 2	1.10-10
	RG02	17 ± 3	34 ± 4	5 ·10 ⁻¹⁰

Energetics

 $E_{iso,\gamma} = 2.0 \pm 0.7 \times 10^{52} \text{ erg} (2-400 \text{keV})$

[Jan 25 2006]

57/18

Near-IR/X-ray Observations

0.67 days: NTT/Sofi J,H,Ks
1.67 days: NTT/Sofi J,H,Ks
3.65 days: NTT/Sofi Ks
6 days: Chandra
4 Sources (Butler et al. 2003a)
12 days: Chandra
C1 fading (Butler et al. 2003b)
14.8 days: UKIRT/UFTI K
120 days: VLT/ISAAC Js

AG candidate (Greiner, AR, Klose et al. 2003)

What causes this burst to be optically dark?

Large intrinsic extinction: $A_V > 2mag$ Observational limitations: $R_{obs} > 18.7 (t=0.097)$ (Ayani & Yamaoka 2003) $R_{exp} = 20.1-23.1$ Burst properties: ??High redshift: ??

Conclusions

- Discovery of the near-IR afterglow
- Would have been 'dark' burst without near-IR and Chandra observations
- 2nd faintest near-IR detected so far
- 'optical darkness' certainly due to lack of rapid and deep observations
- Discovery of the underlying host galaxy
- among the brightest K-band hosts known
- late type galaxy at z < 1

Early Optical Observations

t	filter	mag	ref.	
106s	white	>15.8	Torii 2003	
152s	white	>16	Uemura et al. 2003	
0.097 d	R	>18.7	Ayani et al. 2003	
0.496d	white	>20.5	Valentini et al. 2003	

• optically dark burst !

Data Reduction & Calibration

ISAAC Js

A very faint near-IR afterglow

SED fitting - photometric redshift

late type galaxy

early type galaxy

