

Arne Rau (Caltech)

<u>History: Optical Transients and Variables</u>

- until mid 20th century, transients and variables were major focus of astronomy
- discovery of Supernovae, Planets, Comets, Novae
- distance to M31 using Cepheids

1054 A.D. / Crab

M31 (Roberts 1899)

Recent History - Shift to other wavelengths

- Discoveries outside the optical (e.g., Pulsars, X-ray Binaries, **Gamma-ray Bursts**) - Radio, X-ray and Gamma-ray sky scant is of sources

(NASA/GLAST)

<u>The Optical Zoo - Known Knowns</u>, <u>Known Unknowns and Unknown Unknowns</u> [SRK, all rights (potentially) reserved]

Known Knowns:

Eruptive:	SNe, Novae, Dwarf Novae, Luminous Blue Variables, AM CVn, AGN
Pulsating:	Cepheids, RR Lyr, Delta Scuti, Mira
Magnetically-driven:	UV Ceti, RS CVn, CU Virginis
Geometric:	Microlensing, wide binaries, planetary transits

<u>The Optical Zoo - Known Knowns</u>, <u>Known Unknowns and Unknown Unknowns</u> [SRK, all rights (potentially) reserv

Known Knowns:

Eruptive:	SNe, Novae, Dwarf Novae, Luminous Blue Variables, AM CVn, AGN
Pulsating:	Cepheids, RR Lyr, Delta Scuti, Mira
Magnetically-driven:	UV Ceti, RS CVn, CU Virginis
Geometric:	Microlensing, wide binaries, planetary transits

Known Unknowns:

Orphan GRB Afterglows, Macronovae, Stellar and Planetary Mergers

<u>The Optical Zoo - Known Knowns</u>, <u>Known Unknowns and Unknown Unknowns</u> (SRK, all rights (potentially) reserv

Known Knowns:

Eruptive:	SNe, Novae, Dwarf Novae, Luminous Blue Variables, AM CVn, AGN
Pulsating:	Cepheids, RR Lyr, Delta Scuti, Mira
Magnetically-driven:	UV Ceti, RS CVn, CU Virginis
Geometric:	Microlensing, wide binaries, planetary transits

Known Unknowns:

Orphan GRB Afterglows, Macronovae, Stellar and Planetary Mergers

Unknown Unknowns:

?, ?, ?, ...

A New Dawn

- survey renaissance due to technological advances (sensors, computing, storage, network)
- SkyMapper (2007), Pan-STARRS1 (2007), VISTA (2007), LSST (2013)
- **BUT:** require renaissance in transient/variable selection

The Deep Lens Survey Transient Search

(Becker et al. 2004, ApJ)

- high Galactic latitude survey at CTIO/Blanco and NOAO/Mayall from 1999-2005
- repeated 600-900s exposures in BVRz'
- 2 unidentified fast transients

The Deep Lens Survey Transient Search

(Becker et al. 2004, ApJ)

- high Galactic latitude survey at CTIO/Blanco and NOAO/Mayall from 1999-2005
- repeated 600-900s exposures in BVRz'
- 2 unidentified fast transients

- counterpart at R=24.6, z'=21.4
- inconsistent with PSF $(\chi^2=11.3/3)$
- extra-galactic?

Appreciation of Rates

 - if both extra-galactic, than staggering annual rate of 10⁸ events per year (3 per second)

(z=0 rates, Kulkarni & AR 2006)

Туре	Rate (Gpc ⁻³ yr ⁻¹)	Reference
Long-soft GRBs	~30	Guetta et al. 2005
Core-collapse SNe	~5 × 10 ⁴	Cappellaro et al. 1999
Short-hard GRBs	10–10 ⁵	Nakar et al. 2005
Novae	~10 ⁸	See below

Unusual kind of Novae? But bright as SN and fading much faster!

Spectroscopic Identification

(Kulkarni & AR 2006, ApJ)

Spectroscopic Identification

(Kulkarni & AR 2006, ApJ)

DLS transients = Flares from Galactic M dwarfs

- Similar to solar flares, but on larger scales (1/5th of the circumsphere)
- heating and acceleration of plasma in magnetic reconnection
- high Galactic latitude suggests detached binary (RS CVn)

<u>Lesson Learned I</u>

- flare stars with rate as high as 10⁸ events per year
- outnumber genuine sources by (at least) factor of 100
- old friends: false GRB afterglows (Greiner & Motch 1995; Gizis 2000), Catalina transient in Lynx (Djorgovski et al. 2004), CFHT fast transient (Price 2005)

<u>Lesson Learned I</u>

- flare stars with rate as high as 10⁸ events per year
- outnumber genuine sources by (at least) factor of 100
- old friends: false GRB afterglows (Greiner & Motch 1995; Gizis 2000), Catalina transient in Lynx (Djorgovski et al. 2004), CFHT fast transient (Price 2005)

How to penetrate the Flare Star Fog

- extent may be gaseous nebula after multiple flares or asterism
- location close to galaxy must not mean association
- make use of UV colors
- judicious choice of direction (high Galactic latitude) and filter (not too blue)
- pre-search for dM with deep K-band imaging

ROTSE Transient J160213.1-021311.7

- in ROTSE-III sky patrol fields in May 2006 (Rykoff et al. 2006)
- no known counterpart (DSS, 2MASS)

(AR et al. 2007a, ApJ)

ROTSE Transient J160213.1-021311.7

- in ROTSE-III sky patrol fields in May 2006 (Rykoff et al. 2006)
- no known counterpart (DSS, 2MASS)

(AR et al. 2007a, ApJ)

Superoutburst from Dwarf Nova

Interlude: Dwarf Novae

- cataclysmic variable, consisting of close binary (WD + X)
- outbursts caused by sudden viscosity changes in the accretion disk
- typical amplitudes of 2-8mag in SU Uma type DNe

ROTSE Transient J160213.1-021311.7

- in ROTSE-III sky patrol fields in May 2006 (Rykoff et al. 2006)
- no known counterpart (DSS, 2MASS)

(AR et al. 2007a, ApJ)

<u>ROTSE Transient J160213.1-021311.7</u>

- in ROTSE-III sky patrol fields in May 2006 (Rykoff et al. 2006)
- no known counterpart (DSS, 2MASS)

Superoutburst from Dwarf Nova

(AR et al. 2007a, ApJ)

- H α FWHM = 2000km/s
- double peaked lines indicate disk system
- color suggests cold disk with low mass transfer

<u>WFI Transient J161953.3+031909</u>

- in ESO/MPG 2.2m WFI Orphan Afterglow Search (AR et al. 2006, A&A)
- faint ROSAT source
- LRIS spectrum in 2006: with high inclination disk DN in quiescence (low mass accretion rate)
- uncanny coincidence of orbital period and observing schedule

(AR et al. 2007a, ApJ)

Lesson Learned II

- 3 more recent DNe (Var Leo, SN15207 and Var Vul 05)
- DNe with faint quiescence can mimic new transients
- N_{DN} (# of DNe) & N_{SO} (# of superoutburst in all-sky snapshot) for R_{amp}<23, R_{quies}<25, M_{R,WD}=12, 1yr cycle, 10days plateau

Lesson Learned II

- 3 more recent DNe (Var Leo, SN15207 and Var Vul 05)
- DNe with faint quiescence can mimic new transients
- N_{DN} (# of DNe) & N_{SO} (# of superoutburst in all-sky snapshot) for R_{amp}<23, R_{quies}<25, M_{R,WD}=12, 1yr cycle, 10days plateau

Table 5: Dwarf novae number counts and outburst rates.

Galactic latitude	N_{DN}^{1}		$N_{SO}{}^2$		
	$ ho = 3 imes 10^{-5} { m pc}^{-3}$	$ ho = 10^{-3}{ m pc}^{-3}$	$ ho = 3 imes 10^{-5} { m pc}^{-3}$	$ ho = 10^{-3}{ m pc}^{-3}$	
$ b < 10^{\circ}$	$\sim 1 \times 10^3$	$\sim 4 imes 10^4$	~ 32	$\sim 1 \times 10^3$	
$10^\circ < b < 45^\circ$	$\sim 6 imes 10^2$	$\sim 2 \times 10^4$	~ 16	$\sim 5 \times 10^2$	
$ b > 45^{\circ}$	$\sim 1 imes 10^2$	$\sim 5 imes 10^3$	~ 4	$\sim 1 imes 10^2$	

- 4x10⁴ events per year, comparable to CC SNe

A new Discovery - M85OT2006-1

- Lick Observatory Supernovae Search, Jan 07 2006 at 19.3mag
- 2.3kpc from center of M85
- precursor F475W > -4.3 and F850LP > -6.4
- peak V=-13

Temporal Evolution

data from: P60, P200, Keck, Magellan, UKIRT
 strong red-ward evolution

Kulkarni et al. 2007, Nature)

Optical Spectroscopy

- P200/DBSP (Jan 08) and Keck/LRIS (Feb 24)
- H α and H β at M85 distance of 15Mpc, FWHM= 350±140 km/s
- numerous unidentified lines (λλ4115,6428,6527,8079,8106)
- $-T_{BB} \sim 4600 \text{ K}$

Energetics and Progenitor

- $L_p \sim 5x10^6 L_{\odot}, E_{ph} \sim 7x10^{46} \text{ erg}$

- HST limit excludes LBVs, no ongoing star formation)
- 100x larger than Eddington luminosity (for M ~ $M_{\odot})$
- $R_{BB} = [L_p/4\pi\sigma_B T_{eff}^4]^{1/2} \sim 17(T_{eff}/4600K)^{-2} AU$
- A stellar merger ? (Soker & Tylenda 2003)

Known Analogs

- M31RV (Rich et al. 1989) in bulge of M31
- V4332 Sgr (Martini et al. 1999) in Milky Way
- V838 Mon (Brown et al. 2002) in Milky Way B-star cluster

(Tylenda et al. 2005)

The Mid-Infrared Evolution

(Lynch et al. 2004)

strong IR excess after few monthsnewly formed dust?

(Mould et al.. 1990)

Spitzer near and mid-IR of M85OT2006-1

- 3000s in IRAC (3.6-8 μm) and IRS peak-up (15.8 & 22 μm) - July 2006 , t ~ 180days - F_{IRAC} ~ 40 μJy

Spectral Energy Distribution

Energetics

Table 2: Inferred black body parameters.

Source	$L_{\text{peak}} = [\times 10^5 \text{L}_{\odot}]$	$T_{ m eff,peak}$ [×10 ³ K]	$R_{ m peak}$ [×10 ³ R _☉]	$L_{\text{late}^{a}}$ $[\times 10^{5} L_{\odot}]$	$T_{\rm eff, late}$ [×10 ³ K]	$R_{ m late} \ [imes 10^3 m R_{\odot}]$	$R_{\rm late}/t$ [km s ⁻¹]
M85 OT2006-1 ^b	~ 50	~ 4.6	~ 3.6	$2.9^{+0.4}_{-0.5}$	0.95 ± 0.15	20^{+6}_{-4}	870^{+260}_{-180}
$M31 RV^{c}$	~ 8	~ 4	~ 2	~ 0.6	~ 1	~ 8	~ 920

 $^a\mathrm{at}\;t\sim180\,\mathrm{days}$ for M85 OT2006-1 and $t\sim70\,\mathrm{days}$ for M31 RV

 b peak values from (Kulkarni et al 2006). Late time values this paper

^cpeak luminosity from (Rich et al.1989). Remaining values from (Mould et al. 1990)

velocity from black body >> FWHM(Hα) ~ 350 km/s (Feb 24)
a-spherical explosion? long lasting activity? different components?
V838 Mon : slower evolution (late time collaps)

Lesson Learned III

event rate ~ 12 per year to 20 Mpc (Kulkarni et al 2007, Soker & Tylenda 2006)
search in IR: duration longer than in optical
e.g. 1-10 new events in SINGS or with Akari (ASTRO-F)

Summary

New Surveys will detect millions of transient and variables per year.

The known/unknown unknowns will be diluted in the fog of known knowns.

Event	Rate		
Long-soft GRBs	30 (Gpc ⁻³ yr ⁻¹)		
Core-Collapse SNe	5x10 ⁴ (Gpc ⁻³ yr ⁻¹)		
Short-hard GRBs	10-10 ⁵ (Gpc ⁻³ yr ⁻¹)		
Novae	10 ⁸ (Gpc ⁻³ yr ⁻¹)		
Flare Stars	10 ⁸ (R<23 per yr)		
Dwarf Novae Superoutburst	4x10 ⁴ (R<23 per yr)		
Luminous Red Novae	12 (per yr)		

- ul

- ul

Reduction and Transient Search

Transient Search:
differential photometry
(ΔR>0.75 mag)
12000 candidates
⇒ 4 transient sources in >2 obs.

Transient #4: origin unknown

- $\Delta R \sim 1.5$ mag in 2 days
- flare star, supernova, afterglow, asteroid ?
- not associated with a triggered burst

Transient #4: origin unknown

- $\Delta R \sim 1.5$ mag in 2 days
- flare star, supernova, afterglow, asteroid ?
- not associated with a triggered burst

