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On September 14,2015 at 09:50:45 UTC the two de 086 - 0'7 - O|8 - 0'9 — % - '1'.1' - 1'2 - 1'3 14
Observatory simultaneously observed a transient grav .
frequency from 35 to 250 Hz with a peak gravitational !
predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the
resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a

false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater

than 5.16. The source lies at a luminosity distance of 41075 Mpc corresponding to a redshift z = 0.097055.

In the source frame, the initial black hole masses are 3613 M, and 2973 M, and the final black hole mass is

621 3M, with 3.0702 M c? radiated in gravitational waves| All uncertainties define 90% credible intervals.

These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct
detection of gravitational waves and the first observation of a binary black hole merger.
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P(D|\, M)P(\ M)
P(D|M)

Bayes Equation

P(\|D, M) =

In frequentist analysis, only use P(D|\, M)

Statements are constrained to the form:
For parameter values in the range A € [A1, Ao]
The DATA satisfies some probability criteria

Can lead to empty intervals

In Bayesian analysis, use P(\|D, M)

Statements are of the form:
The PARAMETER values in the range A € [A1, o]

satisfy some probability criteria
Cannot lead to empty intervals (no goodness-of-fit)
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Poisson Distribution

P(nlv)=v €

n!
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Applies to processes with constant rate,
large number of trials & small

probability.

Notes:

e As v increases, the distribution
becomes more symmetric

e Approximately Gaussian for large v

e Poisson formula is much easier to use
that the Binomial formula.



Poisson Example

Likelihood used in likelihood analysis
(Bayes with flat prior)

P(Nlv)
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Frequentist Confidence Level Intervals

Neyman construction — for each value of the parameter(s), find set of
possible outcomes that contain at least 1-a probability. For the central
interval and Poisson distribution:

ny =  sup <E PGlv)<a/2;+1
' ne0,. .. ,00 (‘ ) //
P(n=0v) >a/2 —>n; =0

\ =0

= inf Pilv) <a/2p;—1
2=l (2T S a2
Of_a:{nl,...,ng}

Set contains at least 1-a probability of DATA outcomes for a given expectation. Central interval
— balance probability on either side as evenly as possible.



Poisson Example

Example for v=10/3

n | Pnlv) | F(n|lv) | R | Fr(nlv)
0 | 0.0357 | 0.0357 | 7 | 0.9468
E.g., Take 1-a=0.9 a/2=0.05 1 | 0.1189 | 0.1546 | 5 | 0.8431
2 | 0.1982 | 0.3528 | 2 | 0.4184
3 102202 | 05730 | 1 | 0.2202
oY =1{ni,...,ny} 4 | 01835 | 0.7565 | 3 | 0.6019
(@7 Y 9 . . .
5 | 0.1223 | 0.8788 | 4 | 0.7242
o~ (L2aasany 0|00 | ok o | pon
8 | 0.0135 | 0.9927 | 9 | 0.9927
P9 = 0.9435 9 | 0.0050 | 0.9976 | 10 | 0.9976
10 | 0.0017 | 0.9993 | 11 | 0.9993
11 | 0.0005 | 0.9998 | 12 | 0.9998
12 | 0.0001 | 1.0000 | 13 | 1.0000

Now repeat for all interesting values of parameter.



Neyman Construction — Central Interval

Poisson 90% Confidence Bands
~ 10
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Confidence Level Calculation

_ neov_
Coverage: Given the true value,
the observed n will be included Poisson 90% Confidence Bands
_ o ~ 10
in O7_, ={ny,...,na2} ) |
in at least 1-a of experiments by ‘ |
construction. V2 & |

1 \
So, for given observed n, true o l |
value with be contained within S¢ ’ |
{Vl ) VQ} 4 l
in at least 1-a of experiments 3 |
(coverage). 2l | |
V1 1 , l

No statement about the true value |

in any single experiment ...



Use of Frequentist CL Intervals

Not intended to be used individually. Rather, collect a lot of intervals
and use these to ‘find’ the true value (not specified how).

A

A I
»
0 A
» »
A ¥ v A
> A A
- & True value should be the one
v that is in the set of intervals
v v A the right fraction of the time
v Y (e.g., 68% of the time for the
v 68% CL intervals).
v| v
v V
¥
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The CL intervals will depend on the probability criteria chosen. E.g., we

Smallest Interval

can choose the smallest interval containing a given probability:

Rank outcomes according to
probability.

05,=1[1,2,3,4,5,6]
Recall:

0§ =[1,2,3,4,5,6,7]

So — need to specify criterion of

selection with %CL specification.

n | Pnlv) | F(n|lv) | R | Fr(nlv)
0 0.0357 | 0.0357 7 0.9468
1 0.1189 0.1546 5 0.8431
2 0.1982 0.3528 2 0.4184
3 0.2202 0.5730 1 0.2202
4 0.1835 0.7565 3 0.6019
5 0.1223 0.8788 4 0.7242
§] 0.0680 0.9468 § 0.9111
7 0.0324 | 0.9792 8 0.9792
8 0.0135 0.9927 9 0.9927
9 0.0050 | 0.9976 | 10 0.9976
10 | 0.0017 | 0.9993 | 11 0.9993
11 | 0.0005 0.9998 | 12 0.9998
12 | 0.0001 1.0000 | 13 1.0000




Bayesian Data Analysis-Poisson Distribution

Result will depend on choice of prior. If we assume a flat prior starting
at 0 and extending up to some maximum of v much larger than n.

p . . va PO(”) B . ;iv
(vn) = ——1— =
fo S—Po(v)dv | —dv
Vmax n 1% 1 oo 1
/ v dy ~ —/ Ve Vdy = —nl =1
0 ’n/' 'n/' 0 'n'
—UV,, N
P(v|n) = S vt =n
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Poisson — cont.

<
S
a
08 || =0
Some examples
0.6
0.4
n=1
0.2 |
%9
Comments: v

If you decide to quote the mode as your nominal result, you would use v'=n. For large enough
n, the 68% probability region is then approximately

n—+v/n—n-+n
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Poisson - cont.

The cumulative distribution function:

v o.,n,—v
F(v|n) = /OV S

]

[S—

|

®

R
= S

e.g.,
n=23 ve|0.94,6.94]

90 % C1 assuming flat prior

n=0 velo,3|
95 % C1I assuming flat prior
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Smallest credible interval

Numerically identical to 95% CL upper limit
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Poisson — signal+background

If we have a background (which we always do ...), then we have a total
expectation

bw=v-+A

where A is the background expectation. We initially assume it is known.

The number of events is expected to follow a Poisson probability distribution

n

P(n|v, ) = 'u—'e_“
n!

The Neyman band plot is unchanged, and we find CL ranges for pu.
We then translate to a range on v with

v E (1 — A 2 — Al



Frequentist Statistics

Poisson distribution in the presence of background, with mean A. Then
we have the same bands as for signal only, but replace v with (v+A).

Poisson 90% Confidence Bands

=
o9
3
5 n=3X=3.0,ucl0.7,7.7]
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il For n=0and A > 3
3 :
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Discussion

Procedure is perfectly well defined

Can result in unphysical values for the signal parameter or empty
intervals. There can be data outcomes for which no values of the
signal parameter satisfy our probability criterion on the data.

This is not a problem in itself, but given the tendency to misinterpret
CL intervals as statements about parameter values, this can lead to
confusing results. E.g., higher background levels can be advantageous
for getting stronger limits. Many examples in S. Biller & S. Oser,
Nucl.Instrum.Meth. A774 (2015) 103-119.

Has led to new probability criteria for the data that do not produce
empty intervals.



Feldman-Cousins Confidence Levels

The most popular (at least in particle physics) is the Feldman-Cousins
construction, where a rank 1s assigned to possible outcomes based on

L Pllp=A+v)
P(n|f)

Where [i is the value of y that maximizes P(n|u) given the
constraints. Example constraint p > A

Gary J. Feldman and Robert D. Cousins, A Unified Approach to the Classical Statistical Analysis of
Small Signals, Phys.Rev.D57:3873-3889,1998



Concrete example: N)\ =30 vr=0.3

n | P(n|k) [ P(n|i) r Rank | Fr(n|v)
0 0.0357 3.0 0.050 0.717 5 0.7565
1 0.1189 3.0 0.149 0.796 4 0.7208
2 0.1982 3.0 0.224 0.885 3 0.6091
3 0.2202 3.0 0.224 0.983 1 0.2202
4 0.1835 4.0 0.195 0.941 2 0.4037
5 0.1223 5.0 0.175 0.699 6 0.8788
§ 0.0680 6.0 0.161 0.422 7 0.9468
7 0.0324 7.0 0.149 0.217 8 0.9792
8 | 0.0135 | 8.0 0.140 | 0.096 9 0.9927
9 | 0.0050 | 9.0 0.132 | 0.038 10 0.9976
10 | 0.0017 | 10.0 0.125 0.014 11 0.9993
11 | 0.0005 | 11.0 0.119 0.004 12 0.9998

€.g. O 9 _ {O }

Similar to Neyman construction, but use Rank to add elements to set
until reach at least 1-a probability content of possible results.



Poisson 90% CL Bands a la Feldman-Cousins for A=3.0

L 10
9i
interval for v not empty 8|
v <44@90 % CL ¢
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n=0,r<1Q95 % CL (Feldman-Cousins)
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Bayes Analysis for Poisson Data

e Hu"

p=A+v  P(n|p)=

n!
Assuming that the background 1s perfectly known:

P(nlv, A\) Po(v)
[ P(n|v,\)Py(v)dv

P(v|n,\) =

assuming a flat Py (v) and integrating by parts.

Oty
'Zz 0 z'

P(vin,\) =

The cumulative pdf is
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Poisson — cont.

Posterior probability density for v with
n = 5 events observed and two
different known background
expectations (top). The cumulative of
the posterior probability density
(bottom).

Comment:

For n=0, P(v|n, A)=ev. It does not matter
how much background you have, you get
the same probability distribution for the
signal.
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Comparing Feldman-Cousins with Bayesian Analysis with same
background )\ = 3.0 and a flat prior.

'Zz 0 z'
— v n v
€ Zi:O ( Jz'r! ik

i T

Recall: P(v|n,\) =

Fvn,\) =1-—

We will take the smallest interval with 90% credibility. I.e.,

/ P(v|n, \)dv = 0.90
P>C

We find Vdown Vup fulfilling this condition. Numerical integration.



Comparison Poisson 90% CIl vs FC-CL A=3.0

A 10 | |
O S5 1 O O Numerically similar
5 N U W A T O A O O large n, but big
o differences for
R -+ttt trtrt1rrt n <A
A [ [ (R [ O Y O
b ¢ .
5 U] g Bayes: ﬂa.|t prior,
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) I I I AR Y R B | D —
. SR
. AR e e o o A R S S e s — S— Feldman-
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2ttt trrtrtre
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Bayesian Limit vs Feldman-Cousin

Main difference is for number of observed events < expected
background. In the Bayesian approach, use the fact that the number of
background events cannot be larger than the number of observed

events:
e~V (>\—|-7/)
Z’) ﬂ z'

im0 T

Fvin,\) =1 —

Frequentist limits often ‘look stronger’ because of the behavior for
small numbers of events. Limits on parameter are produced in region

where the experiment has no sensitivity.



S. Biller & S. Oser, Nucl.Instrum.Meth. A774 (2015) 103-119.

The EXO collaboration published first results from the EXO: First run

EXO-200 neutrinoless double beta-decay experiment in

2012 [13]. In the *1o energy resolution window around FC: )\ = 41, n = 1, v < 2.
the endpoint, 1 event was observed where a background 95

of 4.1+0.3 counts was expected. Using a spectrum fit, T1 /2 > 2.2-10 yr
the authors derived a bound of <2.8 total signal counts

at the 90% CL, corresponding to a lower bound to the

half-life for Ov38 of 1.6 x 10?° years. A Feldman-Cousins BayeS: Tl /2 >1.1- 1025 yr
bound based on the +1¢ bin would have yielded a limit

of less than 2.0 signal counts at 90% CL (accounting for

the 68% signal efficiency of the bin), correspond
even more restrictive 90% CL lower bound for
life due to the negative fluctuation of 2.2x10%° y
the other hand, a Bayesian bound with a prior u
counting rate based on the 1o bin would hav
a limit of less than 4.0 signal counts, correspon
90% CI lower bound to the half-life of only 1.1x 1
— seemingly less restrictive than the Feldmanr
bound by a factor of two.

EXO: Second run (4x exposure)

FC: XA =16, n =21,

Ty/p > 1.3-10% yr
Bayes: 17,0 > 1.2- 10%° yr
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centuates this effect 14]. Within the 1o energy reso-
lution window around the endpoint, 21 events were ob-
served where a background of 162 counts was expected
15]. All approaches derive similar bounds for this case:
the authors derived a 1-sided 90% CL lower bound to
the OvS8 half-life of ¢/, > 1.1 x 10°° years by apply-
ing Wilks’” Theorem to a likelihood analysis, which is a
factor of 1.45 less restrictive than the initial result. A
Feldman-Cousins analysis based on the +1¢ bin would
yield a bound of ¢;,2 > 1.3 X 10%° years, a factor of 1.7
less restrictive than the F-C bound from the initial re-
sult. However, a Bayesian bound, with a prior uniform
in counting rate and based on the same bin yields a value
of ¢, 12 > 1.4 X% 10%° years or, using the appropriate inte-
gration of the posterior probability derived from the pro-
vided likelihood curve assuming a uniform prior, a value
of t1;2 > 1.2 x 10%° years. Both Bayesian calculations
are modestly more restrictive than the initial Bayesian




CL, Method, Profile Likelihood

There is some unhappiness in the community because the F-C method
can produce intervals/exclusions where the experiment has no

sensitivity. As with Neyman, not really a problem, except that people
interpret the CL Intervals as statements about the model/parameters.

A. L. Read, Presentation of search results: the CL technique, J. Phys.
G: Nucl. Part. Phys. 28 (2002) 2693-2704.

nearly all physicists tend to misinterpret frequentist results as statements
about the theory given the data.

Frequentist statements are not statements about the model — only about
the data in the context of the model. This is not what we wanted to know
... at least not the ultimate statement. Leads naturally to
misunderstandings.



Discussion similar for more complicated situations (multiple
parameters, other types of distributions, ...)

Summary:

* Frequentist CL intervals provide a range of parameter values for
which the data has satisfied certain probability requirements. Range
depends on criteria, so they should be specified. Not a statement

about probable values of the parameters.

* Bayesian Cl provide a range of parameter values for which the
parameters have satisfied certain probability requirements. Range
depends on priors as well as interval definition, so they should be

specified.
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