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● Difficulties to overcome in image analysis:

1. Ill-posed inverse problem 

2. 0-few counts per pixel

3. Diffuse background plus celestial objects: a) Background is not constant; 

                                                                       b) Sources show large variety of source morphologies 

4. Instrumental complexities

➔ Increase statistical and systematic errors in the data 



IntroductionIntroduction

Fabrizia Guglielmetti – Bayes Forum  @ MPE   – July 6, 2012



IntroductionIntroduction

Fabrizia Guglielmetti – Bayes Forum  @ MPE   – July 6, 2012



Why is it important?Why is it important?

Fabrizia Guglielmetti – Bayes Forum  @ MPE   – July 6, 2012

● Address astrophysical problems, as:

– Study physical properties of detected objects

– Test models of structure formation (as for clusters of 
galaxies)

– Explore stellar and galaxy evolution

– Understand the nature of dark energy and dark matter

– Provide insight for the origin and the ultimate fate of the 
Universe 

– ....

                  We need to detect both point-like and extended sources



Standard detection approachStandard detection approach
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From: ”Astronomical Image and Data Analysis”
           Starck, J.-L. and Murtagh, F.
           Springer Verlag 2006

● Objects of interest are superposed on 
a relatively flat signal: Background 
signal

● Background must be accurately 
estimated, or bias on flux estimation is 
introduced

● (Common) Background estimation:

➔ Cut out of sources (ebox)

➔ Histogram after partitioning image into 
blocks (Median filtering)

● Statistical fluctuations: thresholds are 
used for tuning the number of false 
sources

➔ False positives and negatives
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1. Preserves statistics

2. Detect faint sources

3. Detect point-like and extended 
sources

4. Reliable background model

5. Properly include exposure

6. Uncertainty of estimates

1. Poisson, background fluctuations

2. Joint background+sources,

 model parameters estimated from  
 the data

3. Large variety of source 
morphologies

4. Steep gradients

5. Instrumental complexities

6. Quantification
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D={dij}∈ℕ

Bij :d ij=bijij
Bij :d ij=bijsijij

✔ Single observed data set:

✔ Bayesian Probability Theory (BPT)

✔ Two complementary hypotheses for each pixel:

✔ Assumptions:

I. b smoother than s
II.

✔ 2D spline (Thin-Plate spline)

✔ BPT with probabilistic mixture model

b , s∈ℝ+



t  x = E  x∑
l= 1

N

l f  x − xl , with x ∈ℝ2

Number of supporting points

plane Radial Basis Function: f  x− x l=r
2 lnr 2

weights

Thin-Plate spline (TPS)Thin-Plate spline (TPS)
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● Requirements:

1)          is 2nd order differentiable

2)                     

3)

satisfy the interpolation conditions, evaluate the TPS

t  x 

t  x i=z i

∥t2∥=I [ f x , y ]=∬
ℝ

2

 f xx
2
2 f xy

2
 f yy

2

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p dij∣ Bij , bij , sij =
bij sij

d ij

dij!
e−bij s ij , when Bij is true

p dij∣Bij , bij =
bij
d
ij

dij!
e−b ij , when Bij is true

p D∣b,∗ ,∗=∏
ij

[
∗p dij∣Bij ,bij1−

∗
p dij∣Bij ,bij ,

∗
]

p Bij =  , p  Bij= 1− 

Poisson Likelihood

Marginal Poisson Likelihood

Likelihood for the mixture model

mean expected intensity

p sij∣=
e−sij /


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p dij∣ Bij , bij , sij =
bij sij

d ij

dij!
e−bij s ij , when Bij is true

p dij∣Bij , bij =
bij
d
ij

dij!
e−b ij , when Bij is true

p D∣b,∗ ,∗=∏
ij

[
∗p dij∣Bij ,bij1−

∗
p dij∣Bij ,bij ,

∗
]

p Bij =  , p  Bij= 1−  p sij∣ ,a=e
−a/s ijsij

− a−1

−1

Poisson Likelihood

Marginal Poisson Likelihood

Likelihood for the mixture model

Slope Cut-off params
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p dij∣ Bij , bij , sij =
bij sij

d ij

dij!
e−bij s ij , when Bij is true

p dij∣Bij , bij =
bij
d
ij

dij!
e−b ij , when Bij is true

p D∣b,∗ ,∗=∏
ij

[
∗p dij∣Bij ,bij1−

∗
p dij∣Bij ,bij ,

∗
]

Poisson Likelihood

Marginal Poisson Likelihood

Likelihood for the mixture model

max
 ,

p  ,∣D∗ ,∗
Hyper-parameters:  Laplace approximation  
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Hyperparameters:  Laplace approximation  max
 ,

p  ,∣D ∗ ,∗

p  ,∣D= p D∣ ,p p 
pD 
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Fabrizia Guglielmetti – Bayes Forum  @ MPE   – July 6, 2012

TPS Observatory exposure time

p b∣D∝p D∣b,∗ ,∗×p b
Posterior PDF of
background:

max
b

p b∣Db∗ Estimate of 
Background Map

t  x ×x 



Posterior pdf for source detectionPosterior pdf for source detection
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p  Bij∣dij ≈
1

1 
∗

1−∗
⋅

p dij∣Bij ,bij
∗


p dij∣Bij ,bij
∗ ,∗
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p  Bij∣dij ≈
1

1 
∗

1−∗
⋅

p dij∣Bij ,bij
∗


p dij∣Bij ,bij
∗ ,∗

b∗={bij
∗}
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p  Bij∣dij ≈
1

1 
∗

1−∗
⋅

p dij∣Bij ,bij
∗


p dij∣Bij ,bij
∗ ,∗

Bayes factors



Detection of faint sources and Detection of faint sources and 
complex morphologiescomplex morphologies
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1.  Multi resolution analysis:

2.  Multi band analysis:

  Statistical combination of data from different energy bands

pdfs assigned correlating the 
information

of neighbouring pixels:

Source Probability Maps (SPM)

p Bij∣d ijcomb=1−∏
k=1

n

[1− p B ij∣d ij k ]



Detection of faint sources and Detection of faint sources and 
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SPM 4”
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SPM 10”
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LSS image Photon count smoothed

SPM 4''

SPM 6''

Detection of two clusters  
(merging)



PhotometryPhotometry
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Dij=bijG ij ∀ {ij }∈ {k } Data of a source in 
detection area 'k'

Function describing the photon counts 
distribution of detected sources

p x , y , x , y ,  , I∣b ,d ∝∏ij Dij
d ij e

−D ij

d ij !

Max of posterior pdf:

∀ {ij }∈ {k }



Application to RASSApplication to RASS

The Vela SNR      d=(          ) pc   (Cha et al.1999)
                              Age=(                ) yr   (Aschenbach et al. 1995)

250±30
18000±9000
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Vela SNR background modelVela SNR background model
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The Vela PulsarThe Vela Pulsar

BSS technique: 

XMM-Newton (2008):  

~3% difference < 5% expected divergence

F X [0.5−2.0]keV =3.176±0.009×10
−11erg /s /cm2

F X [0.5−2.0]keV =3.285±0.004×10
−11 erg /s /cm2
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RASS: varying exposureRASS: varying exposure
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RASS: varying exposureRASS: varying exposure
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(0-9) counts/pixel
ACO S 340 (Abell et al, 1989)
         z=0.068 (De Propris et al., 2002)

co
u

n
ts

/p
ix

e
l



CDF-SCDF-S
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Photon counts/pixel 
(smoothed)

SPM (3 arcsec)



CDF-SCDF-S
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Ms/pixel Background counts/pixel



CDF-S: XID 594, zCDF-S: XID 594, z∼0.735∼0.735
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Color composite image (B,R,I) -
WFI telescope

Superposed: X-ray contours 
(SPM, 20”)  

1.5 arcmin [638 kpc]

Cluster of galaxy with cD galaxy (#3) 
not located at the centre of the cluster

and contaminated by  surrounding 
galaxies



Summary & ConclusionsSummary & Conclusions
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● Analysis of Poisson images is awkward because of: 

➔ Few counts per pixel, Poisson noise, instrumental complexities, large 
variety of source morphologies 

● BPT supplies a general and consistent frame for logical inference 

● BPT combined with a probabilistic mixture model allows one to gain insight into the 
coexistance of background and sources

● The BSS technique:

✔ Provide detection of both point-like and extended soucres

✔ Is capable to automatically separate point-like from diffuse emission

✔ Is capable to detect sources independently to their morphology also features as filaments 

● The BSS method is currently under a feasibility study for being applied to eROSITA 
mission, with the goals  to provide important insight for the quests of: Dark matter, 
Dark Energy and distribution of matter in the Universe 
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