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Gravitational Lensing, 
Why?
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Gravitational Lensing

makes very little to no assumptions about the structure of the source (and possibly the lens 
potential as well; see end of this lecture), although the solutions often require regularization because the 

number of free parameters can be large.
makes use of all (or most) information available in the lensed images or even absence of 

information; i.e. the prediction of lensed images that are not present in the data are penalized.
allows structure of the source to be separated from structure in the lens potential, in a statistical (i.e. 

Bayesian) sense.
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Galaxy + Lensed Image Lensed Image Non-parametric model

Lensing Galaxy

Reconstructed source

For a fixed lensing 
potential

Pixelated source defined on adaptive grid+ analytic main lens mass model

Pixelated potential corrections

All embedded in a Bayesian framework
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Image Plane Source Plane

Choose a parametric model for the total mass lens distribution: elliptical power-law defined by 
the free parameters p (include external shear)

Each point xi,j  with its corresponding surface brightness distribution di,j maps to a point on the 
source plane yl,m via the lens equation

Assign to the point yl,m   a surface brightness value si,j using surface brightness conservation
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Image Plane Source Plane
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 In practical terms

 In Bayesian terms
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 In practical terms

 In Bayesian terms

The best non-linear parameter of the lensing potential are derived by minimizing the penalty 
function with a Simplex downhill method

P (p,�|d,L, H) =
P (d|p,�,L, H)P (p,�)

P (d|L, H)

P (d|p,�,L, H) =

Z
P (d|p, s,L)P (s|H,�)ds
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Model Comparison

P (L, H|d) / P (d|L, H)P (L, H)

P (p,�|d,L, H) =
P (d|p,�,L, H)P (p,�)

P (d|L, H)

P (d|L, H) =

Z
P (d|p,�,L, H)P (p,�)d�dp
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CDM vs WDM

Lovell et al. 2012
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How do we probe the small scales beyond the Local Universe and 
independently from baryons?

Using strong gravitational 
lensing!

Independent of the baryonic content

Independent of the dynamical state of the system

Only way to probe small satellites at high redshift 
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Gravitational Imaging

 (x, ⌘)
tot
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Smooth analytic power-law model

pixellated potential correction

Vegetti & Koopmans 2009

Koopmans 2005
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 In Bayesian terms
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Gravitational Imaging

substructures are responsible of localised surface brightness 
perturbations and are detected as localised potential corrections

Any substructure can be detected provided it is mass enough and/
or close enough to the Einstein ring

For each substructure detected its mass can be measured by 
assuming a mass model or directly from the pixelated corrections in a 

model independent way
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Statistics of detections

P (�, f | {ns,m},p) =
L ({ns,m} | �, f,p) P (�, f | p)

P ({ns,m} | p)

Vegetti & Koopmans 2009

L ({ns,ms,Rs} | ↵, f(< R),p) =
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 200 very sensitive lenses can 
constrain the mass function  at the few 
percent level 

 10 not-very sensitive lenses cannot 
constrain the slope of the mass function  but 10 may be just enough

Statistics of detections
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Sensitivity Function
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Sensitivity Function

�I ⇡ rS ·r� = rS · ↵sub
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Sensitivity Function
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Conclusions

I developed a fully-Bayesian adaptive lens modeling technique for the analysis of extended sources

Sources are regularizes to unsure smoothness and avoid noise fitting

The regularization level is a free parameter of the model and the regularization form depends on the source 
structure

The method allows for regularized linear and local potential corrections, that could be the signature of mass 
substructure

I developed a statistical interpretation to turns substructure detections into constraints on the substructure 
population

The sensitivity to substructure depends on the substructure mass, the data angular resolution and S/N, the 
source structure

Computing the sensitivity function properly is computationally very expensive and better way is need
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