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Ubiquitous Chaotic Long-Range Order and State-of-Art Theory
of Stochastic Differential Equations (SDEs) and Dynamical
Systems (DS) Theory

The Cohomological Theory of SDEs (ChT-SDE): Extended Hilbert
Space; Topological Supersymmetry and Its Spontaneous Breaking
(Chaos); Ergodicity and Time Reversal Symmetry Breaking; Phase
Diagram and Noise-Induced Chaos.

Example: Healthy Brain is at the Phase of Noise-Induced Chaos
Conclusion
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I g~ Ronge Order

1/, pink, or flicker noise (long-term Power-law (or scale free) statistics (e.g, Richter Scale) of
memory effect)- algebraic power-spectra highly nonlinear processes or events such as earthquakes
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I g~ Ronge Order

/ Darwin Theory of Punctuated Equilibria\
Evolution (1859) (Eldredge, Gauld, 1972)
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-Range Order

\

Switching processes in financial markets

Tobias Preis**“", Johannes J. Schneider®, and H. Eugene Stanley*’
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-Range Order

/ Neuronal Avalanches in Neocortical Circuits \

John M. Beggs and Dietmar Plenz
Unit of Neural Network Physialogy, Labaratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20852
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N g~ Range Order

Traffic Flocking

Soft condensed

matter
Aerodynamics o g

Econodynamics
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g Range Order

' Flocki
Astrophysics Trafﬁc ocking

Soft condensed
matter

Aerodynamics
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hydrodynamics
Biological evolution
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Il Range Order: Astrophysics

SELF-ORGANIZED

Astrophysics: IN

.. a wide range of phenomena in astrophysics, such
as planetary magnetospheres, solar flares, w “o:
cataclysmic variable stars, accretion disks, black !,
holes and gamma-ray bursts, and also to
phenomena in galactic physics and cosmology...

2015/7/17 Excellence Cluster Universe, Garching 9



85/ 8x(t) =0
Hamilton dynamics

2015/7/17

)DEs in Physics

deterministic

probabilistic

X(t) = F(x(t))

Euler Equations

Quantization

X(t) = F(x(t)) + Noise

- Sort Condensed Matter
Hydro-,Aero- ... dynamics
Everything “non-quantum?”,
i.e., above the scale of quantum
degeneracy/coherence

Low-Energy
Effective Equations
of Motion

Quantum Theory U = [[e*"

- Hard Condensed Matter
- Atomic and Molecular Physics
- Elementary Particle Physics

Least Action Principle, S — min

er Universe, Garching
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)DEs in Physics

deterministic | probab

Sort Condensed Matter
Hydro-,Aero- ... dynamics

Domain of observation Everything “non-quantum”,
of CLRO i.e., above the scale of quantum
degeneracy/coherence

X(t) = F(x(t)) + Noise

X(t) = F(x(t))

Hamilton dyna g = 4‘_—A> OW-LEnergy
Effective Equations

of Motion

Quantization

Quantum Theory U = [[e*"

Euler Equations

- Hard Condensed Matter
- Atomic and Molecular Physics
- Elementary Particle Physics

Least Action Principle, S — min
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I\ (ool DEY

Theory of SDEs is older than the quantum theory
and general relativity.

Theories of Brownian motion. Smoluchowskii
(1906), Einstein (1905), even earlier works

Stochzq Dif Stochastic flows

Equati. and stochastic
differential
equations
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s Questiony

Theory of SDEs is older than the quantum theory
and general relativity.

Theories of Brownian motion. Smoluchowskii
(1906), Einstein (1905), even earlier works

Stoch: 4  Dif Stochastic flows
Equati» S

and stochastic
differential
CLTE G

— Turbulence —__

Non-equilibrium Chaotic
dynamics dynamics

? Ergodic theory of
chaos

Thermodynamic —
equilibrium

Ergodic
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Chaotic Long-Range Order

|

Accidental picture

l

Symmetry breaking picture

CLRO is a “critical” phenomenon - some CLRO is a symmetry breaking
excitation has zero gap because the DSisat  phenomenon, and CLRO is a result of

a “phase transition”

the Goldstone theorem.

Contradiction with ubiquity of CLRO Requirement from ubiquity of CLRO
Self-Organized Criticality. postulation of All stochastic systems must possess such
existence of mysterious tendency of self- a symmetry and it must be a
fine-tuning into the phase transition into supersymmetry

ordinary chaos

2015/7/17
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X(t) = F(x(1)) + (20) e, (x(1))&" (1)

/

DS’s variables from
some topological
manifold, X, called
phase space

2015/7/17
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Temperature

Flow vector field /

x(t) = F(x(1)) + (20)" %€, (x() " (1)

/

DS’s variables from
some topological
manifold, X, called
phase space

A set of vector fields,
vielbeins, If (in)dependent
on x(t), it is said that noise
Is (additive)multiplicative

2015/7/17 Excellence Cluster Universe, Garching 16



o s om.

Temperature
Guassian white

- Noise variables

Flow vector field

x(t) = F(x(1)) + (20)" %€, (x() £ (t)

/

DS’s variables from
some topological
manifold, X, called
phase space

A set of vector fields,
vielbeins, If (in)dependent
on x(t), it is said that noise
Is (additive)multiplicative

Possible generalizations: any noise; partial differential equations; flow
vector field and vielbeins with explicit time/space dependence and
“integral” or temporary (and spatially) nonlocal dependence on x...

2015/7/17 Excellence Cluster Universe, Garching 17
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X{t) =My (x(t ')@@

X(t) = F(x(1)) + (20) e, (x(1))&" (1)

x(t)

Excellence Cluster Universe, Garching
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s vo Lt

X(t) = F(x(1)) + (20) e, (x(1))&" (1) j

Noise dependent trajectories - family of maps

Mtt'(g) : X(t') — X(t)’ X(t) = Mtt'(é! X(t'))

X{t) =My (x(t '»5@

x(t)

2015/7/17 Excellence Cluster Universe, Garching 19



s vo Lt

X(t) = F(x(1) + (20) e, (x(1))" (1) j

Noise dependent trajectories - family of maps

Mtt'(g) : X(t') — X(t)’ X(t) = Mtt'(é! X(t'))

Time momentt > t' . remporal evolution  Tjme moment t'
w(&,1) w(t)

2015/7/17 Excellence Cluster Universe, Garching 20



- GPDs in the coordinate-free setting = differential or k-forms:
= (&) "y (k) (X)dX A. /\dX”‘ c QW(X)
- Hilbert space is the exterior algebra Q(X) = @QU‘)(X)
- Consideration of generalized (not only total) probablllty
distributions is a mathematical necessity

A k-form is naturally coupled to k-
dimensional submanifolds (k-chains)

p“‘) :j y® R
k)

Meaning: in local coordinates
where k-chain belongs the
hyperplane x**',..,x” — consts

is the probability to find

1 k T . .
X ,..,X within the chain, given
the other variables are known

Examples: gonditic

distributio

al and total probability

p(l)(x) = p(x1 |X2 )dx'! +p(X2 |X1)dX2

2015/7/17 Excellence Cluster Universe, Garching 21



I e bility Distribution

- GPDs in the coordinate-free setting = differential or k-forms:

2015/7/17

= (k)P (x)dx A.ndxt c QP(X)

Example: standard definition of Cond.Prob.Density on R”

P (x'x”) = B (x| )P, ()
In coordinate-free setting
Py = P (X x . xdx" A Adx® QP
P _.=P_ . (x'.x"|x"" . x")dx' n..ndxt cQF
Po=P g NPy = P (x'.x")dx'An.rndx"” cQ”

Excellence Cluster Universe, Garching
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Bra-ket “factorization” of total probability density

Quantum theory ChT-SDE
7(x Ww(x)= TPE (x — 1 k k+1 D _ 1 D
v(x)y(x) (x) v(x)dx ..dx" ny(x)dx ;..a’X ' =TPF(x)dx ..dx
Total Unthermalized, Thermalized, All vars.
Probability unstable vars. stable vars.
Function

2015/7/17 Excellence Cluster Universe, Garching 23



s vo Lt

X(t) = F(x(1) + (20) e, (x(1))" (1) j

Noise dependent trajectories - family of maps

Mtt'(g) : X(t') — X(t)’ X(t) = Mtt'(é! X(t'))

Time momentt > t' . remporal evolution  Tjme moment t'
w(&,1) w(t)
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o s om.

X(t) = F(x(1) + (20) e, (x(1))" (1) j

Noise dependent trajectories - family of maps

Mtt'(g) : X(t') — X(t)’ X(t) = Mtt'(é! X(t'))

Time momentt > t' . remporal evolution  Tjme moment t'
p(S,1)=M :t (l//iilf?ik (X(t"))dX" (t) A ... A dX™ (1) p(t)= Wiil.(..)ik

T \ Variable substitution
Pullback by M.,(&) X(t') =M (& x(1)) [

2015/7/17 Excellence Cluster Universe, Garching 25




o s om.

X(t) = F(x(t)) +(20) e, (x(1))£° () ﬂ

Noise dependent trajectories - family of maps

Mtt'(g) X() = x(1), x(t) = Mtt'(éti X(t"))

Stochastic evolution for GPDs, w < Q(X), s
y(®) =My (t), My =(M{ (&)
M., (£) — pullback induced by M (&)

2015/7/17 Excellence Cluster Universe, Garching 26




o s om.

X(t) = F(x(t)) +(20) e, (x(1))£° () ﬂ

Noise dependent trajectories - family of maps

Mtt'(g) X() = x(1), x(t) = Mtt'(éti X(t"))

Stochastic evolution for GPDs, w < Q(X), s
y(®) =My (t), My =(M{ (&)
M., (£) — pullback induced by M (&)
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o s om.

X(t) = F(x(t)) +(20) e, (x(1))&° (t) ﬂ

M, =e " H=L -0LL, Noise dependent trajectories - family of maps
or infinitesemally, 8, = - Hy M (£) X(t") — x(t), x(t) = M. (&, x(t"))
N

Stochastic evolution for GPDs, w < Q(X), s
y(®) =My (t), My =(M{ (&)
M., (£) — pullback induced by M (&)
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o s om.

X(t) = F(x(t)) +(20) e, (x(1))£° () ﬂ

oY

M, =e " H =L, ®L Lo Noise dependent trajectories - family of maps

orlnflnltesemally/w /le// M (€)1 X(1") = X(1), X(t) = M. (&, X(t"))

"Average" flow, Lie or

physical derivative along F

Stochastic evolution for GPDs, w < Q(X), s
Noise indiced diffusion N | A -
LA&LA&, =g’ 6,\’?;)(/‘*‘--- l//(t) - Mtt(//(t )’ Mtt' - <Mt't (§)>Noise
g” =ele/ —noise induced metric M :t (5) — pu”back |nduced by M t't(g)

2015/7/17 Excellence Cluster Universe, Garching 29



o s om.

No Approximations!

X(t) = F (x

oY

A

M,=e " H=L_-0L L

A

or infinitesemally, 8, = - Hy

(1) +(20) e, (x(1)5° (1) j

Noise dependent trajectories - family of maps

Mtt'(f) X() = x(1), x(t) = Mtt'(égi X(t"))

0,P(x)d°x =—(5,F'

Stratonovich Interp. = Weyl symmetrization

2015/7/17

N

Stochastic evolution for GPDs, w < Q(X), s

—@0.e.0.e))P(x)d°x

iva~ j-a

w(t) = I\7|tt"//(tl)’ Mtt' - <Mt*'t (§)>Noise
M. (¢) — pullback induced by M (&)

Excellence Cluster Universe, Garching 30



I .74

Stochastic evolution on exterior algebra
ow =Ry, A=L, -0L [,
The Fokker-Planck operator can be given explicitely supersymmetric form
A =[d.d].
where d =1, ~ @i, L, , i —interior multiplication, and the use of

Cartan formula, L. = [d, I ], has been made with d being exterior derivative.
Also,

[d,H] =0,

d is asupersymmetry of the model

2015/7/17 Excellence Cluster Universe, Garching
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I persymmetry Operator

Exterior differentive:

d v, (x)dx" A.ndx™ = ai] v, (x)dx) Adx™ A..ndx™
b'e

is very fundamental to albegraic topology

-) It is the matter of Stokes' theorem, I = j d p,

dc k+1

where 0 is the boundary operator.
-) Its cohomology is De Rahm cohomology
d is the algebraic representative of "boundary" operator
It is nilpotent, d* =0, "boundary of a boundary" is empty

A A

d commutes with any pullback [c;' ,M_.(£)]=0, and thus with the evolution operator [d,M]=0

Interpretation: continuous-time dynamics conserves the "concept of boundary"

04— 0
A Poincare (5)‘ 5 M.,.(&)

dual of a chain
I

2015/7/17 Excellence Cluster Universe, Garching 32




R sy mmetry Operator

Properties of wedge product
dx" Adx™ =—dx" Adx"
are those for anticommuting or fermionic fields
Zjlljz _ _ijljl
Differential forms can be given as functions
of bosonic and fermionic fields
(k) I iy (k) I I
v dx AL Adx Tt =y et
In these terms, exterior derivative has the form
A 0

i

ox’

2015/7/17 Excellence Cluster Universe, Garching



I .74

Stochastic evolution on exterior algebra
ow =Ry, A=L, -0L [,
The Fokker-Planck operator can be given explicitely supersymmetric form
A =[d.d].
where d =1, ~ @i, L, , i —interior multiplication, and the use of

Cartan formula, L. = [d, I ], has been made with d being exterior derivative.
Also,

[d,H] =0,

d is asupersymmetry of the model

2015/7/17 Excellence Cluster Universe, Garching
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I .74

Stochastic evolution on exterior algebra
ow =-Hy, A =L, -0l L[, .

The Fokker-Planck operator can be given explicitely supersymmetric form

K = [d,d].

whered =i_ - @i L_, i. —interior multiplication, and the use of

a ea !
Cartan formula, I:F = [&, I ], has been made with d being exterior derivative.
Also,

[d,H] =0,
d is a sup ersymmetry of the model

Eigenstates of H are either
_\_> ) supersymmetric singlets: d |6,) =0 but |6,) = d|something)

All have zero eigenvalues ! 4
_|—> -) or non-supersymmetric doublets: |.,) and cﬂgn) =0

2015/7/17 Excellence Cluster Universe, Garching
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d-symmetry broken d- and PT reversal Quantum theory
symmetries broken 3,y =—(iH )y

FP operator is real and thus psuedo-Hermitian

- Eigenvalues are either real or complex conjugate pairs (Ruelle-Pollicott resonances of DS theory)

2| n)(al=1(k|n)=5,,

- Eigensystem is complete, bi-orthogonal: #|n)=E,|n),(n|H = E,(n
For physical models with positive definite noise-metric

- Real parts of eigenvalues are bounded from below

From supersymmetry

- All eigenstates are either supersymmetric singlets or non-supersymmetric doublets

- All non-zero eigenvalues correspond to non-supersymmetric pairs

- There always exist a supersymmetric state of the steady-state total probability distribution,

i.e., the state of "thermodynamic equilibrium".

2015/7/17 Excellence Cluster Universe, Garching 36
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d-symmetry broken

d- and PT reversal
symmetries broken

Pathintegral
representation

Contribution
only from

Physical meaning

Quantum theory
atV/ = _(]H)W

Value

Partition Function
Z =Tre ™

Witten Inde>g A
W = Tr(—l)F e

D e{Q,‘I’}
APBC

j Ddel?Y
PBC

Ground states (in
large time limit)

Supersymmetric
states only

Stochastic number
of periodic solutions
(for some models)

Partition function of
noise (up to a
topological factor)

Z t—o 2et|Eg|

For spectrum b
Chaotic behavior

Euler
characteristic of
X

Both have physical meaning only if the entire exterior algebrais the Hilbert space !

2015/7/17
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d-symmetry broken d- and PT reversal Quantum theory
symmetries broken 3,y =—(iH )y

Spectra a and b: correlators in the long time limit reduce to those of the ground states only
<01 (£)-- O &, )> - Zr:iz,wae_(t”’_tl)HOle_(“_tZ)H e T g et t)

ty,,—>F0 -1 A J

) Ng Zg<g|01(t1)"°0k(tk)|g>,

where O,(t,) =e " 0,e """ in Heisenberg picture
Interpretation: ergodicity property
For spectra c: one can use standard trick of quantum theory

(a little Wick rotation) to make theory "ergodic"

2015/7/17 Excellence Cluster Universe, Garching

38



I Effect

For perturbation of the form ¢°(t) = 5 (t —t,)5™

Unperturbed trajectory
¢ f,(X(t,)) — the infinitesemal shift of the trajectory

Perturbed trajectory

-———,

In order to study response of the system, introduce probing fields
F(x(0) = F' (x(0) +¢" ()£, (x(2))

The evolution operator transforms as

< External perturbation

A A0 =H+¢" (0, =H+¢'(0)d.i, |,

efJ.O[[-j/(r)dr

The response can be charactized by response correlators (£, =7r b )
Chron.Ordering
. - 4 (¢) -1 g A g A
LimZ L =N gk d,i, () |...|d,1, (t,)]|g
(o 5¢b1 (t1)5¢bk (t]() $—0 g gcgroél states< | |: b :| |: K :|| >

In Heisen’t;,erg picture
=N Y (g [d, A &) vvherefiz‘ﬁll}b1 (tl)...[c},ifbk (tk)}

gcground states w’

All vanish by the definition of supersymmetric
(ground) states

Interpretation: forgets perturbations/initial
conditions in the long-time limit

supersymmetric

2015/7/17 Excellence Cluster Universe, Garching 39

Some do not vanish because the ground states are not

Interpretation: remembers perturbations/initial conditions
even in the infinitely long time limit — the butterfly effect !



N lasex andt. Stosistics

2015/7/17

A

Expectation value of an operator, O, at moment ¢,
<O(t)> =lim Z;'Y" (nfe" " 0e |n)=N,'Y. (gl0]g)
For wide class of operators including 0=0cQ°

<é> =[ O0(x)P,(x)

where the "ergodic" probability density
P,(x)= N;lzglﬁg(x)wg(x)dxl...dXD

Statistics works no matter if the supersymmetry is broken or not

Excellence Cluster Universe, Garching
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U(x),P(x) U(x),P(x)-?

Langevin 1D dynamics

<

> / r\ >
- Forgets initial conditions - Never forgets initial conditions because the
variable is not stable

- Thermalizes to a steady-state

total probability distribution (the - The steady-state total probability distribution is
ground state) meaningless . The ground state is
(g]=1 |8)=P(x)dx (g|= P(x)dx g)=1
(glg)=[P(x)dx =1 (g]8)=[ P(x)dx=1

The ground state is not a distribution in unstable variables

2015/7/17 Excellence Cluster Universe, Garching 41



Ket — Poincare dual of global unstable manifolds
Bra- Poincare dual of global stable manifolds

d|Poincare dual of chain) =|Poincare dual of boundary of chain)

Integrable (non-chaotic) flows: the Non-integrable (chaotic) flows: the non-
supersymmetric ground states are Poincare supersymmetric ground states are Poincare
duals of global unstable manifolds duals of global unstable manifolds modified by a

functional dependence on position

2015/7/17 Excellence Cluster Universe, Garching 42



e Cirovnd States

Langevin ODE on 2D torus

Langevin function is the height in the “3/4“ direction

(3|, point, 2 form

(2, cirlce, 1 form

, circle, 1-form

a

|3) entire space,

- | constant function

|2) circle, 1-form

(0], entire space, 1), circle, 1-form

constant function |0), point, 2-form

W =(-1)"(3]3)+(-1)' (2]2)
+(=1)" (1|1)+(~1)*(0|0) = 0 (Euler characteristic of torus)

Lorenz model
Unstable manifold

(picture by Hinke Osinga)

2015/7/17 Excellence Cluster Universe, Garching
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N s & Diogrom

Type |

O, Temp 4 TE - Thermodynamic equilibrium
C - "Ordinary" chaos

TE

»

Params.

High temp.: H = I:F —®I:ea ﬁea — _®|:ea I:ea

Physical Laplacians do not break supersymmetry.

With the increase of noise temperature, the susy will eventually get
restored — strong enough noise destroys chaotic long-range order

2015/7/17 Excellence Cluster Universe, Garching

44



N s & Diogrom

Type I

O, Temp ‘ TE - Thermodynamic equilibrium
C -"Ordinary" chaos
TE N - Noise-Induced Chaos

VA \ .f./

N
7 C

> Noise-induced Chaos
Params.

*  Weak noise introduces exponentially weak overlap or noise-induced tunneling
processes (instantons) between “local” ground states on different attractors.

* When tunneling processes break susy, Goldstinos representing parameters
(modulii) are gapless. Result: power-law or scale free statistics.

* Mostly “regular” behavior along attractors interrupted by sudden unpredictable
processes with scale-free statistics. Exists on the border of “ordinary” chaos.
Typical description of Self-Organized Criticality!

* At higher temperatures, N-C is a crossover because external observer can not

tell between different tunneling events
2015/7/17 Excellence Cluster Universe, Garching 45



Neuronal Avalanches in Neocortical Circuits

Experimental evidence:
neuroavalanches exhibit power-law statistics. John M. Beggs and Dietmar Plenz

Unit of Neural Network Physialogy, Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20852

This suggests brain has its susy broken by these .
processes — the N-phase £ A

H

I =

E : --";f o |
I" L+
Bl e

wvber electacade datawc )]

Numerical Evidence:
Neuroavalanches exhibit power-law for a range
of parameters.

A. Levina, J.M. Herrmann, and T. Geisel (2006).
Dynamical Synapses Give Rise to a Power-Law
Distribution of Neuronal Avalanches

R
uiss (hslsctrodent fe— )

Figured. (harcteriticexponent for neuronal swalanche sives & — 377, A, IED verses L for original and rescaled grid sives.
Red, Average; black, indiridual oultures. §, Power laws at At = Il for each oulture haw?umcterislit exponent o~ — 15
Bladk, Humber of electrades; blue, LFP; average fior all culbures. C, Aversge shopes for oultures (left) and acute shices (right). 0, At
Ar= IEl_q and coresponding |ED, the skope « is independent of an=y size. kons indicate resampled amays at D = 200, 400,
amd i) pem. £, Resamipled power lws forsummed LFP values [same amaysas in ). F, Cotoff point of the power law = determined
bythe number of elecrodesin the amay {m = 15, 30, &% ED = 20 ). §, Redudion in inhibition in the presence of the GABA,
recepior antagonist picotadn destroys the power law and renders the event sire distrbution bimodal. Note the presence of a
large brump at highervalues, indicating epdeptic dscharge. K, The mitial slope of the event size distritation i siqnificantly steeper
[ jp =< 0L05) in the presence of peootoan. Same oolor cede as i 6./, Average event size distribution for refractary peried set io 0
msecat A = 4 meec |Bree cultures). Broken linein red indicates sope of —3/2.
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Recovery of consciousness is mediated by a network of
discrete metastable activity states

Andrew E. Hudson®", Diany Paola Calderon™', Donald W. Pfaff®2, and Alex Proekt®<?2
“Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medidne, University of California, Los Angeles, CA 90095; bL/abtz'nrator\‘l

for Neurobiology and Behavior, The Rockefeller University, New York, NY 10065; and “Department of Anesthesiology, Weill Cornell Medial College,
New York, NY 10021

Recovery of consciousness goes
through a set of phase transitions
anesthetic unconscious ' conscious
| ||
<€ L .

coma |
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Recovery of consciousness is mediated by a network of
discrete metastable activity states

Andrew E. Hudson®", Diany Paola Calderon™', Donald W. Pfaff®2, and Alex Proekt®<?2
“Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medidne, University of California, Los Angeles, CA 90095; bLabc;rmor\_.'

for Neurobiology and Behavior, The Rockefeller University, New York, NY 10065; and “Department of Anesthesiclogy, Weill Cornell Medial College,
New York, NY 10021

Recovery of consciousness goes
through a set of phase transitions
anesthetic unconscious ' conscious
| | |
( [T ] .

coma |

Atkinson and Shiffrin model: short-term memory and long-term memory

_—]

Scale:~¥<1min Scale:*>1min
Physics: fast electrochemical dynamics of light ions Physics: bio-chemical and mechanical
SDEs: well know, e.g., Hudgkin-Huxley model rewiring of synapses
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Recovery of consciousness is mediated by a network of
discrete metastable activity states

Andrew E. Hudson®", Diany Paola Calderon®™’, Donald W. Pfaff®2, and Alex Proekt®<?

“Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medidne, University of California, Los Angeles, CA 90095; bLaboraton_,'
for Neurobiology and Behavior, The Rockefeller University, New York, NY 10065; and “Department of Anesthesiclogy, Weill Cornell Medial College,
New York, NY 10021

Determined by the
same neurodynamical
phenomena

Recovery of consciousness goes

through a set of piTa ansitions

»

anesthetic unconscious ' conscious
[
<€ —r—@

coma |

Atkinson and Shiffrin mode and long-term memory

“short-term memor

Scale:~<1min Scale:*>1min
Physics: fast electrochemical dynamics of light ions Physics: bio-chemical and mechanical
SDEs: well know, e.g., Hudgkin-Huxley model rewiring of synapses
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The ChT-SDE picture

anesthetic unconscious , conscious
[
< 1 @

coma |
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The ChT-SDE picture

Temp.

anesthetic

<€

unNsQENSCcIious 'conscious Seizure  anti-anesthetic

—@ >

N-phase

C-phase

-) Conscious brain is in the N-phase. One can tell between neuroavalanches-this is weak-noise regime.

-) C-phase must correspond to neurodynamical phenomenon of “seizure” (like in epilepsy) — neurons fire non-
stop, non-integrable flow. Again, because the N-C transition is sharp, the brain is in the weak-noise regime

-) Coma is in the TE-phase where there is no chaotic dynamical memory. Therefore, chaotic dynamical memory
is the short-term neurodynamical memory.

-) Existence of short-term memory is a necessary condition for being conscious. Consciousness is within the N-
phase

2015/7/17 Excellence Cluster Universe, Garching
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Symmetry Order Parameter Goldstone- Low-Energy Effective

broken Nambu Particle Theory
Ferromagnet 0O(3) Local Magnetization Spinwave LLG Equation
Crystal Spatial Local Stress Transverse Theory of Elasticity
translation sound
Supersonductor (Global) U(1) “Wavefunction” of Zero sound GL Theory

Bose-Condensate of
Cooper pairs

4

Example: 2D vortex “dominated” turbulence  Time N I

- Order parameter: (half-of) spatial positions of \ ,'

vortices

- Goldtinos are supersymmetric partners of
position of vortices

\ ’
\\ - 4
Palat
- LEET: could it be Schwartz-type TFT? If yes, . @
does the concepts of braiding, topological /@Lj’ \I
I e M

quantum computing etc. apply somehow?
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The newly found approximation-free theory of stochastic dynamics

* reveals the mathematical origin of the ubiquitous dynamical/chaotic long-range — the
spontaneous breakdown of topological supersymmetry that all natural/stochastic dynamical
systems possess. “Chaos” (absence of order) is a misnomer in a certain sense because
dynamical chaos is a low-symmetry or “ordered” phase.

* clarifies the concepts of thermodynamic equilibrium and ergodicity
* demystifies the controversial concept of self-organized criticality

* shows that dynamical properties of chaotic DSs can not be described by statistics. Low-energy
effective theories of chaotic models, such as turbulent water, are those of gapless
goldstinos/fermions — supersymmetric partners of unthermalized variables

* because of its multidisciplinary character and widest applicability, has a potential to bring
together specialists in DSs theory, statistics, and topological field theories and/or algebraic
topology that will result in cross fertilization of these mathematical disciplines

* has a potential to bring the studies of non-quantum systems to the new level of mathematical
rigor and beauty, i.e., the level of supertsymmetric quantum (field) theories
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Thank You!

Excellence Cluster Universe, Garching
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N Provesses

Ergodic Dynamics Transients (weak noise)

Finite-time dynamics starting and ending at
different points; composite instanton

e |in) = |out)

Time of
|0ut> p Jobservatlon

: Examples: crumbling paper, Barkhausen jumps in
Examples: turbulent water, brain ... ; :
ferromagnets, glasses, cascades and chain reactions of

various types ...
d-symmetry is intrinsically broken on instantons —

crackles must (and they do) exhibit power-law statistics

Infinitely long dynamics with the
global ground state. Periodic B.C.

Transients can be though of being in the N-phase only in a sense of equivalent “ergodic” theory.

It is in this sense, that earthquakes are in N-phase
Tectonic ‘ Tectonic
plates “rings”
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deterministic

X(t) = F(x(t))

Excellence Cluster Universe, Garching




X=0H/op dvy _ (-w)

0= ~h(vy), I
. dt R il R1
p ::_{aki /é»( Jn o
Czﬁ = M +if, N T 7T Eﬁ'
dt R b R3] TRE
Ldt;'{" _ Rlo—}: T

=
ey
=
[ ]
II!—

-) Hamilton/Classical, Conservative dynamics g,

dm
/ Ot :_’:r‘mXHeﬂﬁ—ﬂ’m}(E.
I iy = (—p2/2m+V )y

-) (Magneto-)Hydro-, Bio-, Econo-, Neuro- Dynamics i Flow vector field: Phase Portrait

-) Electric circuitry
-) Magnetodynamics (LLG)

-) Schrodinger equation

g

Everything in Nature !

—— NN
———naN N
S
S

R e

~—="""7"

B il ndut

R el el

Py
R

System’s variables, S\

points from a X(t) = F(x(1))
topological
manifold called
the phase space.
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S=[(Px=HOP)dt y _ 51y /o

ol o ez W
p=—0H /0x dt R o
o @ _ (1) — 1) ; 7l el
2t R =}
d' RI10Z
L'éf = =i, =0
-) Hamilton/Classical, Conservative dynamics am om

= —vm X Heg + am x e

5 Magnetodynamics(LLG)/Q( A2/2m+Vw S = jy/(lha —(p*/2m+V (X))pdtd “ x

-) Schrodinger equation

-) Electric circuitry

-) (Magneto-)Hydro-, Bio-, Econo-, Neuro- Dynamics i Flow vector field: Phase Portrait

Everything in Nature !

S
S

—— NN
———naN N

y i

g e

B i it

e ==
R RN
e atuel

System’s variables,
points from a
topological
manifold called
the phase space.

X(t) = F(x(1))
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deterministic probabi‘
//:) = F(x(t)) + Noise

X

X(t) = F(x(t))

oS 1ox(t)=0
Hamilton dynamics

Low-Energy
Quantization Eff. Theories

Euler Equations

Least Action Principle, S — min
2015/7/17 Excellence Cluster Universe, Garching



ODX is the domain of the DSs Theory

Deterministic Chaos is the major discovery within DS
theory

-) “the three-body problem” by Poincare (1887)

-) Numerical rediscovery by Lorenz (1963) and others.

In hydrodynamics, chaos is known as turbulence

Deterministic chaos in ODEs— non-integrability in the sense of DS theory

This definition does not lead to the explanation of the Butterfly Effect
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SDE = ODE + Noise

0, X(t) = F(x,t) + &, (x)N20£(t)

A set of vector /
fields temperature

ODE

trajectory

Flow

nitial wF T

oint

| |

Initial
point

=

Deterministic
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I Effect

All natural DS’s

Thermodynamic

equilibrium

Chaos
-) Ground state has unstable or “untherm:fllized” ) The stationary total probability
variables (positive Lyapunov exponents), in distribution is (among) the ground
which it is not a probability distribution state(s). Note: not the issue of its
-) The “butterfly effect” existence!
-) This is an ordered (or low-symmetry) phase — -) Tlolermodynamics, sta.tistics are
opposed to the semantics of word “chaos” applicable (Markov chains)
-) Statistics not applicable (example, replica trick) -) Forgets initial

conditions/perturbations
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Comparison with Supersymmetry in Quantum Theory:

-) Hadron Collider — the primary goal is to find supersymmetry in quantum
theory of elementary particles

ChT-SDE: supersymmetry exists (at least) everywhere else from quantum
theory

-) Supersymmetry (if exists) in quantum world must be spontaneously broken.
Prioblems, however, with theory of susy breaking — susy’s hard to break.

ChT-SDE: Chaos is the spontaneously broken susy.

In particular, all life forms are DS’s with spontaneously broken susy
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It 2\ by Clossicy

Werner Heisenberg: " When I meet God, I am going fo ask him fwo
questions: Why relativity and why furbulence? I really believe he will
have an answer for the first.”

Richard Feynman. “furbulence - the most important unsolved problem of
classical physics'

Stephen Hawking. “if is in complexity that I think the most important
developments of the next millennium will be."
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ChT-SDE: Previous Approach

0,x(t) = F(x(£))+(20)"? e, (x(£)) & (¢) = F(¢)

If £(r) = If(X)P(Xt)dDX, what would be £ (¢ + Ar) according to the SDE ?

This is how it derived: x(¢ + At) = x(¢)+ Ax,

Now (¢ +A8) = ([ £(x+Ax)P(x0)d"x) F(t+Ar)= < £, (x)P(xt)d Dx>
=([(£G0+Ax'£,()+ 1/ DAX A E, () +.. ) P(x)d "x) = =(M,,,, (x) > x)
Furcher, | o =([ ()M, Pxt)d" x )
Ax' = At3(x" +aAx") :Al'g1(X)+Al'20!5,‘j(X)SJ(X)+... Ns
(Ito, & =0, Stratonovich, a =1/2) = If(X) <Mt,t+At >NS P(xt)d"x
= | f(x)(i — AtH (o) + ...)P(Xt)dDX E(2)
Thus Fokker-Planck Equation is: E
0,P=-H(a)P . 1 £
a ' — 5 '5317 2 n+1
<§n§n >NS At nn At At éu_]
tlme t]] +1 tﬂ Z_11—1
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rder: Potential Origin

Long—Range Order = Gapless Excitation

Ubiquity of CLRO

Accidental picture

CLRO is a “critical” phenomenon - some excitation has
zero gap because the DS is at a phase transition

T Co weTion

Symmetry breaking picture:

CLRO is a symmetry breaking phenomenon - a

gapless excitation is the Goldstone particle.

Requirement T

All stochastic DSs

Self-Organized Criticality (Bak&Tang&Wiesenfeld, 1987).
proposition to believe that there is a mysterious force that self-tunes
parameters of some SDEs to the phase transition into “chaos”:

1) A mystery explain by another mystery. Technically, this is just a
green light for using well-developed RG approach.

2) If this is true, where does the CLRO come from in chaotic DSs?

3)  There was no definition of chaos for stochastic dynamics

2015/7/17

All DSs must possess this (super)symmetry

Excellence Cluster Universe, Garching
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PAVERS YU B

Long—Range Order = Gapless Excitation

Ubiquity of CLRO

Symmetry breaking picture:

gapless excitation is the Goldstone particle.

Requirement 'r
All DSs must possess a (super)symmetry

All st tic DSs

Such a supersymmetry does exist !
Langevin SDEs: Parisi&Sourlas (1979)
Its topological meaning: Witten (1982) -> ChTs (1988).

-)
-)
-) Pseudo-Hermitian Ev. Op. Mostafazadeh (2002)
-) Stochastic Evolution Op.: Ruelle (1987)

-)

ChT-SDE for all SDEs (201 3)

Lxcelieiice Ciusier Universe, Garching

CLRO is a symmetry breaking phenomenon - a

68



g

ChT-SDE — approximation-free theory of SDEs

Probability,
Statistics,

ynamics

N,

Dynamical
systems theory

Pseudo-Hermitian
quantum theory

ohomological or Witte
type topological field theory,
Parisi-Sourlas Quantizatio

ChT-SDE — dynamical generalization of statistics, or
stochastic generalization of DS theory
Mathematical Foundation: Cohomological or Supersymmetric Field Theories
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