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A Long History 
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The History of Probability Theory, Anthony J.M. Garrett 

MaxEnt 1997, pp. 223-238. 

 

Hájek, Alan, "Interpretations of Probability", The Stanford Encyclopedia of 
Philosophy (Winter 2012 Edition), Edward N. Zalta (ed.), URL = 
<http://plato.stanford.edu/archives/win2012/entries/probability-interpret/>.  
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Pierre Simon de Laplace 
Théorie Analytique des Probabilités 

… the theory of probabilities is basically just  
common sense reduced to calculation … 

… la théorie des probabilités n'est, au fond,  
que le bon sens réduit au calcul … 

Knuth - Bayes Forum 4 



4/29/2016 

Taken from Harold Jeffreys “Theory of Probability” 
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The terms certain and probable describe the various degrees of 
rational belief about a proposition which different amounts of 
knowledge authorise us to entertain. All propositions are true or 
false, but the knowledge we have of them depends on our 
circumstances; and while it is often convenient to speak of 
propositions as certain or probable, this expresses strictly a 
relationship in which they stand to a corpus of knowledge, actual 
or hypothetical, and not a characteristic of the propositions in 
themselves. A proposition is capable at the same time of varying 
degrees of this relationship, depending upon the knowledge to 
which it is related, so that it is without significance to call a 
proposition probable unless we specify the knowledge to which 
we are relating it. 

To this extent, therefore, probability may be called subjective. But in the sense important 
to logic, probability is not subjective. It is not, that is to say, subject to human caprice. A 
proposition is not probable because we think it so. When once the facts are given which 
determine our knowledge, what is probable or improbable in these circumstances has 
been fixed objectively, and is independent of our opinion. The Theory of Probability is 
logical, therefore, because it is concerned with the degree of belief which it is rational to 
entertain in given conditions, and not merely with the actual beliefs of particular 
individuals, which may or may not be rational. 

John Maynard Keynes 
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“In deriving the laws of probability from more fundamental ideas,  
one has to engage with what ‘probability’ means. 

- Anthony J.M. Garrett,  
     “Whence the Laws of Probability”, MaxEnt 1997 

This is a notoriously contentious issue; fortunately, if you disagree 
with the definition that is proposed, there will be a get-out that 
allows other definitions to be preserved.” 

Meaning of Probability 
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The function 𝑝(𝑥|𝑦) is often read as ‘the probability of 𝑥 given 𝑦’ 

Meaning of Probability 

This is most commonly interpreted as the probability that the 
proposition 𝑥 is true given that the proposition 𝑦 is true.   

This concept can be summarized as a degree of truth 

Concepts of Probability: 

 - degree of truth 
 - degree of rational belief 
 - degree of implication 
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Laplace, Maxwell, Keynes, Jeffreys and Cox all presented a 
concept of probability based on a degree of rational belief. 

 

As Keynes points out, this is not to be thought of as subject to 
human capriciousness, but rather what an ideally rational agent 
ought to believe. 

Meaning of Probability 

Concepts of Probability: 

 - degree of truth 
 - degree of rational belief 
 - degree of implication 
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Anton Garrett discusses Keynes as conceiving of probability as a 
degree of implication.  I don’t get that impression reading 
Keynes.  Instead, it seems to me that this is the concept that 
Garrett had (at the time) adopted. 

Garrett uses the word implicability. 

Meaning of Probability 

Concepts of Probability: 

 - degree of truth 
 - degree of rational belief 
 - degree of implication 
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Meaning of Probability 

John Skilling argued against relying on the concept of truth thusly: 

“You wouldn’t know the truth if I told it to you!” 
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Concepts of Probability: 

 - degree of truth 
 - degree of rational belief 
 - degree of implication 
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Meaning of Probability 

Jeffrey Scargle once pointed out that if probability quantifies 
truth or degrees of belief, one cannot assign a non-zero 
probability to a model that is known to be an approximation. 

One cannot claim to be making inferences with any honesty or 
consistency while entertaining a concept of probability based 
on a degree of truth or a degree of rational belief. 
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Concepts of Probability: 

 - degree of truth 
 - degree of rational belief 
 - degree of implication 

4/29/2016 

Meaning of Probability 

Jeffrey Scargle once pointed out that if probability quantifies 
truth or degrees of belief, one cannot assign a non-zero 
probability to a model that is known to be an approximation. 

One cannot claim to be making inferences with any honesty or 
consistency while entertaining a concept of probability based 
on a degree of truth or a degree of rational belief. 
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Can I give you a “Get-Out” 
like Anton did? 



4/29/2016 

Bruno de Finetti - 1931 Andrey Kolmogorov - 1933 Richard Threlkeld Cox - 1946 
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Three Foundations of Probability Theory 

Foundation Based on  
Consistent Betting 

 
 

Unfortunately, the most 
commonly presented 
foundation of probability 
theory in modern  
quantum foundations 

Foundation Based on  
Measures on Sets  

of Events 
 

Perhaps the most widely  
accepted foundation 
by modern Bayesians 

Foundation Based on  
Generalizing Boolean 

Implication to Degrees 
 

The foundation which 
has inspired the most 

investigation and  
development 
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Three Foundations of Probability Theory 

Bruno de Finetti - 1931 

Foundation Based on  
Consistent Betting 

 
 

Unfortunately, the most 
commonly presented 
foundation of probability 
theory in modern  
quantum foundations 

Subjective Bayesianism and the Dutch Book Argument 
 
De Finetti conceived of probabilities as a degree of belief 
which could be quantified by considering how much one 
would be willing to bet on a proposition. 
 
Consistency in betting is central to the foundation. 
 
A Dutch Book is a series of bets which guarantees that one  
person will profit over another regardless of the outcome. 
 
One can show that if one’s subjective degree of belief 
does not obey the probability calculus, then one is  
susceptible to a Dutch Book. 
 
Moreover, one can avoid a Dutch Book by ensuring that 
one’s subjective degree of belief is in agreement with the 
probability calculus. 
 
Important due to its reliance on consistency. 
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Three Foundations of Probability Theory 

Andrey Kolmogorov - 1933 

Foundation Based on  
Measures on Sets  

of Events 
 

Perhaps the most widely  
accepted foundation 
by modern Bayesians 

Kolmogorov’s Probability Calculus 
 
Axiom I  (Non-Negativity) 
Probability is quantified by a non-negative real number.   
 
Axiom II  (Normalization) 
Probability has a maximum value Pr 𝑒 ≤ 1 such that  
the probability that an event in the set E will occur is unity. 
 
Axiom III  (Finite Additivity) 
Probability is σ-additive, such that the probability of any  
countable union of disjoint events 𝑒1, 𝑒2, ⋯  𝜖 𝐸 is  
given by Pr 𝑒1 ∪ 𝑒2  ∪  ⋯ =   Pr (𝑒𝑖)

∞
𝑖 . 

It is perhaps the both the conventional nature of his  
approach and the simplicity of the axioms that has led to  
such wide acceptance of his foundation. 
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Three Foundations of Probability Theory 

Richard Threlkeld Cox - 1946 

Foundation Based on  
Generalizing Boolean 

Implication to Degrees 
 

The foundation which 
has inspired the most 

investigation and  
development 

Generalizing Boolean Logic to Degrees of Belief 
 
Axiom 0 
Probability quantifies the reasonable credibility of a  
proposition when another proposition is known to be true 
 
Axiom I 
The likelihood 𝑐 ∙ 𝑏 | 𝑎 is a function of 𝑏|𝑎 and 𝑐| 𝑏 ∙ 𝑎  
𝑐 ∙ 𝑏 | 𝑎 = F(𝑏|𝑎, 𝑐 | 𝑏 ∙ 𝑎) 
 
Axiom II 
There is a relation between the likelihood of a  
proposition and its contradictory 
~𝑏|𝑎 = 𝑆 𝑏  𝑎) 
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In Physics we have a saying, 
 
“The greatness of a scientist is measured by how long he/she retards 
progress in the field.” 
 
 
Both de Finetti and Kolmogorov considered a well-defined domain, left few 
loose ends, and no noticeable conceptual glitches to give their disciples 
sufficient reason or concern to keep investigating. 
 
Cox, on the other hand, proposed a radical approach that raised concerns 
about how belief could be quantified as well as whether one could improve 
upon his axioms despite justification by common-sense. 

His work was just the right balance between 
- Pushing it far enough to be interesting 
- Getting it right enough to be compelling 
- Leaving it rough enough for there to be remaining work to be done 
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And Work Was Done! 
(Knuth-centric partial illustration) Richard T. Cox 

Ed Jaynes  
Gary Erickson 
C. Ray Smith 
Myron Tribus 
Ariel Caticha 

Kevin Van Horn 
Investigate Alternate Axioms 

Anthony Garrett 
Efficiently Employs NAND 

Steve Gull & Yoel Tikochinsky 
Work to derive Feynman 

Rules for Quantum Mechanics 

Ariel Caticha 
Feynman Rules for QM Setups 
Associativity and Distributivity 

R. T. Cox 
Inquiry 

Robert Fry 
Inquiry 

Kevin Knuth 
Logic of Questions 

Associativity and Distributivity 

Kevin Knuth 
Order-theory and Probability 

Associativity and Distributivity 

Kevin Knuth & John Skilling 
Order-theory and Probability 

Associativity, Associativity, Associativity 

Philip Goyal, Kevin Knuth,  John Skilling 
Feynman Rules for QM Kevin Knuth  

Inquiry Calculus 

Philip Goyal 
Identical Particles in QM 

Jos Uffink 
Imre Czisar 



4/29/2016 

John Maynard Keynes - 1921 

Bruno de Finetti - 1931 
Andrey Kolmogorov - 1933 

Sir Harold Jeffreys - 1939 

Richard Threlkeld Cox - 1946 

Edwin Thompson Jaynes - 1957 

Claude Shannon - 1948 

Probability Theory  
Timeline 

1920 

1930 

1940 

1950 

1960 
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John Maynard Keynes - 1921 

Bruno de Finetti - 1931 
Andrey Kolmogorov - 1933 

Sir Harold Jeffreys - 1939 

Richard Threlkeld Cox - 1946 

Edwin Thompson Jaynes - 1957 

Claude Shannon - 1948 

Probability Theory  
Timeline 

1920 

1930 

1940 

1950 

1960 

Quantum Mechanics 
Timeline 

Erwin Schrödinger - 1926 

Werner Heisenberg – 1932 (NP) 

John Von Neumann - 1936 

Richard Feynman - 1948 

1920 

1930 

1940 

1950 

1960 

Niels Bohr – 1922 (NP) 
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Familiarity breeds the illusion of understanding 

      Anonymous 



In graduate school I asked: 

why 

 

 

results in 
 

 

 

 

 

1 + 2 = 3 
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1 + 2 = 3 
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= 

1 + 2 = 3 
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⋁ 



A B = A B 

𝑣 𝐴 ∪ 𝐵 = 𝑣 𝐴 + 𝑣(𝐵) 
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⋁ 



= 

𝑣 𝐴 ∪ 𝐵 = 𝑣 𝐴 + 𝑣 𝐵 − 𝑣(𝐴 ∩ 𝐵) 

volume 

34 Knuth - Bayes Forum 4/29/2016 

A B A B 

Knuth, MaxEnt 2003 

⋁ 



𝑠 𝐴 ∪ 𝐵 = 𝑠 𝐴 + 𝑠 𝐵 − 𝑠(𝐴 ∩ 𝐵) 

= A B 

surface area 
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A B 

Knuth, MaxEnt 2003 

⋁ 



sum rule of probability 

I)|BPr(AI)|Pr(BI)|Pr(A)|Pr(A  IB
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Knuth, MaxEnt 2003 



𝐼(𝐴; 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 

mutual information 
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Knuth, MaxEnt 2003 



𝑚𝑎𝑥 𝑎, 𝑏 = 𝑎 + 𝑏 −𝑚𝑖𝑛(𝑎, 𝑏) 

polya’s min-max rule 
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Knuth, MaxEnt 2003 



log 𝐿𝐶𝑀(𝑎, 𝑏)
= log 𝑎 + log 𝑏 − log(𝐺𝐶𝐷(𝑎, 𝑏)) 

number theory identity 
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Knuth, MaxEnt 2009 



Clearly, my original question: 

why 

 

 

results in 
 

 

 

 

 

1 + 2 = 3 
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= ⋁ 



Is related to: 
 

why the disjunction of A and B results in 

 

 

 

 

 

I)|BPr(AI)|Pr(BI)|Pr(A)|Pr(A  IB
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the essential content of both statistical 
mechanics and communication theory, of 
course, does not lie in the equations; it lies in 
the ideas that lead to those equations  
      E. T. Jaynes 
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mechanics and communication theory, of 
course, does not lie in the equations; it lies in 
the ideas that lead to those equations  
      E. T. Jaynes 
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A MODERN PERSPECTIVE 



Measure what is measurable, 

and make measurable that which is not so. 

      Galileo Galilei 
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Laws of the Universe 
Reflect 

An Underlying Order 

Underlying Order 
Constrains  

Quantification 

Laws are fundamental 
and are dictated by  

God or Mother Nature 

Order and symmetries  
are fundamental 

Laws are constraints  
on quantification 
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ideas that lead to equations 

Paradigm Shift 



When hypothesizing Laws,  
one can be right or wrong 

Applying consistent quantification  
can only be useful or not useful 

whereas 

48 Knuth - Bayes Forum 4/29/2016 

Methodology 
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Lattices 

Lattices are partially ordered sets where each pair of 
elements has a least upper bound and a greatest 
lower bound  
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aba

bba
ba






Structural 
Viewpoint 

Operational 
Viewpoint 

Lattices are Algebras 

Lattices 

50 
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bba
ba






Structural 
Viewpoint 

Operational 
Viewpoint 

aba

bba
ba






Assertions, Implies 

aba

bba
ba






Sets, Is a subset of 

aba

bba
ba






),gcd(

),lcm(
|

Positive Integers, Divides 

aba

bba
ba






),min(

),max(

Integers, Is less than or equal to 

Lattices and Ubiquity 
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quantify the partial order  ≡ assign real numbers to the elements 

Require that quantification be consistent with the structure. 
Otherwise, information about the partial order is lost. 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 
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𝑓: 𝑥 ∈ 𝐿 →  ℝ 

Quantification 



Enforce local consistency 

𝑥 𝑦 

Any general rule must hold for special cases 
Look at special cases to constrain general rule 

where ⊕ is an unknown operator 
to be determined. 
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𝑥 ∨  𝑦 

𝑓: 𝑥 ∈ 𝐿 →  ℝ 

𝑓 𝑥 ∨ 𝑦 = 𝑓 𝑥  ⊕   𝑓 𝑦  

Local Consistency 



Write the same element two different ways 

which implies 

Note that the unknown operator ⨁ is nested in  
two distinct ways, which reflects associativity 
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Associativity of Join 

𝑥 ∨ 𝑦 ∨ 𝑧 = 𝑥 ∨ 𝑦 ∨ 𝑧 

𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  
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Associativity Equation 

where the aim is to find all the possible operators ⊕ that  
satisfy the equation above. 

We require that the join operations are closed, 
That the valuations respect ranking, i.e. 𝑥 ≥ 𝑦 ⇒ 𝑓 𝑥 ≥ 𝑓 𝑦  
And that ⊕ is commutative and associative. 

𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  

This is a functional equation known as the  
Associativity Equation 



The general solution to the Associativity Equation 

where 𝐹 is an arbitrary invertible function. 
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𝑓 𝑥  ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧 = 𝑓 𝑥 ⊕ 𝑓 𝑦 ⊕ 𝑓 𝑧  

Associativity Equation 

is (Aczel 1966; Craigen and Pales 1989; Knuth and Skilling 2012): 

𝐹 𝑓 𝑥  ⊕ 𝑓 𝑦 = 𝐹 𝑓 𝑥 + 𝐹 𝑓 𝑦  
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Regraduation 

Since the function 𝐹 is arbitrary and invertible, we can define a 

new quantification 𝑣 𝑥 = 𝐹 𝑓 𝑥  so that the combination is 

always additive. 
 
Thus we can always write 

𝐹 𝑓 𝑥  ⊕ 𝑓 𝑦 = 𝐹 𝑓 𝑥 + 𝐹 𝑓 𝑦  

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  

In essence, we have derived measure theory from  
algebraic symmetries. 



Additivity 

𝑥 𝑦 
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Knuth, MaxEnt 2009 

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  

𝑥 ∨  𝑦 

Additivity 



Epiphany! 
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1 + 2 = 3 
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+ = 
always results in 

because combining crayons in this way is  
closed, commutative, associative,  

and I can order sets of crayons. 

Why We Sum 



𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

More General Cases 

General Case 
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General Case 
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More General Cases 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  



General Case 
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More General Cases 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑧  



General Case 
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More General Cases 

𝑥 𝑦 

𝑥 ˅ 𝑦 

𝑥 ˄ 𝑦 𝑧 

𝑣 𝑦 = 𝑣 𝑥 ∧ 𝑦 + 𝑣 𝑧  𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑧  

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦 − 𝑣 𝑥 ∧ 𝑦  



symmetric form (self-dual) 

Sum Rule 
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The Sum Rule 

𝑣 𝑥 ∨ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦 − 𝑣 𝑥 ∧ 𝑦  

𝑣 𝑥 ∨ 𝑦 + 𝑣 𝑥 ∧ 𝑦 = 𝑣 𝑥 + 𝑣 𝑦  



4/29/2016 

A Curious Observation 

Knuth - Bayes Forum 66 

Fundamental symmetries are why the Sum Rule is ubiquitous 

Pr 𝐴 ∨ 𝐵 𝐶) = Pr 𝐴 𝐶) + Pr 𝐵 𝐶) − Pr 𝐴 ∧ 𝐵 𝐶) Probability 

𝐼 𝐴; 𝐵 = 𝐻 𝐴 + 𝐻 𝐵 − 𝐻 𝐴, 𝐵  Mutual Information 

𝐴𝑟𝑒𝑎 𝐴 ∪ 𝐵 = 𝐴𝑟𝑒𝑎 𝐴 + 𝐴𝑟𝑒𝑎 𝐵  − 𝐴𝑟𝑒𝑎 𝐴 ∩ 𝐵  Areas of Sets 

max 𝐴, 𝐵 = 𝐴 + 𝐵 −min 𝐴, 𝐵  Polya’s Min-Max Rule 

log 𝐿𝐶𝑀 𝐴, 𝐵 = log𝐴 + log𝐵 − log𝐺𝐶𝐷 𝐴, 𝐵  Integral Divisors 

Ubiquity (inclusion-exclusion) 

𝐼3 𝐴, 𝐵, 𝐶 = 𝐴⨆𝐵⨆𝐶 − 𝐴⨆𝐵 − 𝐴⨆𝐶 − 𝐵⨆𝐶 + 𝐴 + 𝐵 + |𝐶| Amplitudes from three-slits 
(Sorkin arXiv:\\gr-qc/9401003) 

The relations above are constraint equations ensuring 
consistent quantification in the face of certain symmetries 
  

Knuth, 2003. Deriving Laws, arXiv:physics/0403031 [physics.data-an] 
Knuth, 2009. Measuring on Lattices, arXiv:0909.3684 [math.GM] 

Knuth, 2015. The Deeper Roles of Mathematics in Physical Laws, arXiv:1504.06686 [math.HO] 
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INFERENCE 



apple banana cherry 

states of the contents of  
my grocery basket 

What can be said about a system? 

states 

4/29/2016 Knuth - Bayes Forum 68 



crudely describe knowledge by listing a set of potential states 

powerset 

states of the contents of  
my grocery basket 

statements  
about the contents of  

my grocery basket 

subset 
inclusion 

a          b         c 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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ordering encodes implication 
DEDUCTION 

statements  
about the contents of  

my grocery basket 

implies 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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statements  
about the contents of  

my grocery basket 

inference works backwards 

Quantify to what degree  
the statement that the system is in 

one of three states {a, b, c} 
implies knowing that it is  
in some other set of states 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

What can be said about a system? 
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








yxif

yxif
yx

0

1
),(

The Zeta function encodes 
inclusion on the lattice. 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 

Inclusion and the Zeta Function 
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Valuation Bi-Valuation 

v(x)i)|p(x (x)vi

Measure of x 
with respect to  

Context i 

Context i 
is implicit 

Context i 
is explicit 

Bi-valuations generalize lattice inclusion to  
degrees of inclusion 

BI-VALUATION RLix,:p 

Quantifying Lattices 

Context and Bi-Valuations 
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i)|yp(xi)|yp(xi)|p(yi)|p(x 

Sum Rule 

Context is Explicit 

Quantifying Lattices 
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= 

Associativity of Context 

Quantifying Lattices 
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c)|p(bb)|p(ac)|p(a 

a 

c 

b 

Chain Rule 

Quantifying Lattices 
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x)|yp(xx)|yp(xx)|p(yx)|p(x 

Since x ≤ x and x  ≤  x˅y, p(x | x) = 1 and p(x˅y | x) = 1  

x)|yp(xx)|p(y x y 

x ˄ y 

x ˅ y 

Lemma 

Quantifying Lattices 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 

Quantifying Lattices 
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y)x|p(zx)|p(yx)|zp(y 

y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 

Quantifying Lattices 
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y)x|zyp(xx)|yp(xx)|zyp(x 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 

Quantifying Lattices 
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y)x|p(zx)|p(yx)|zp(y 

y)x|zyp(xx)|yp(xx)|zyp(x 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 

Quantifying Lattices 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y)x|p(zx)|p(yx)|zp(y 



y x z 

x ˄ y y ˄ z 

x ˄ y ˄ z 

Extending the Chain Rule 

Quantifying Lattices 
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y)x|zyp(xx)|yp(xx)|zyp(x 

y)x|p(zx)|p(yx)|zp(y 



Commutativity of the product 
leads to Bayes Theorem… 

Bayes Theorem involves a change of context. 

i)|p(y

i)|p(x
i)x|p(yi)y|p(x 

i)|p(y

i)|p(x
x)|p(yy)|p(x 

Quantifying Lattices 
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x = 

Direct (Cartesian) product of two spaces 

Lattice Products 

Quantifying Lattices 
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The lattice product is also associative 

CB)(AC)(BA 

After the sum rule, the only freedom left is rescaling 

which is again summation (after taking the logarithm)  

Direct Product Rule 

Quantifying Lattices 
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j)|p(bi)|p(aj)i,|bp(a, 



i)|yp(xi)|p(yi)|p(xi)|yp(x 

Sum Rule 

y)x|p(zx)|p(yx)|zp(y 

Product Rule 

i)|p(y

i)|p(x
x)|p(yy)|p(x 

Bayes Theorem 

j)|p(bi)|p(aj)i,|bp(a, 

Direct Product Rule 

Bayesian Probability Theory = Constraint Equations 
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statements  

Given a quantification of the 
join-irreducible elements, 

one uses the constraint 
equations to consistently 

assign any desired  
bi-valuations (probability) 

Inference 

{ a, b }       { a, c }       { b, c } 

{ a }            { b }            { c } 

{ a, b, c } 
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How far can we take 
these ideas? 
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Quantum Mechanics! 
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Quantum Measurements in Series 

Quantum measurements can be performed in series. 
Series combinations of measurement sequences are associative. 
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Quantum Measurements in Parallel 

A B C 

Quantum measurements can be performed in parallel (coarse graining). 
Parallel combinations of measurement sequences are commutative and associative. 
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Consistent Quantification of Quantum Measurement Sequences 

By quantifying a measurement sequence with a pair of numbers, 𝑎 =
𝑎1
𝑎2

, 

 
Associativity and Commutativity of Parallel combinations of measurements 
results in component-wise additivity of the pairs: 

A 

B C 

𝑐 =
𝑐1
𝑐2

=
𝑎1 + 𝑏1
𝑎2 + 𝑏2

 

Distributivity of Series over Parallel combinations of measurements  
results in a bilinear multiplicative form for combining the pairs: 

= ∨ 

C B 

A 

𝑐 =
𝑐1
𝑐2

=
𝛾1𝑎1𝑏1 + 𝛾2𝑎1𝑏2 + 𝛾3𝑎2𝑏1 + 𝛾4𝑎2𝑏2
𝛾5𝑎1𝑏1 + 𝛾6𝑎1𝑏2 + 𝛾7𝑎2𝑏1 + 𝛾8𝑎2𝑏2
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Quantum Measurement Sequences 

One can then show that the probabilities of measurement sequences 

are given by the Born Rule, where for 𝑎 =
𝑎1
𝑎2

, 𝐏 𝐀 = 𝐩 𝐚 =  𝑎1
𝟐 + 𝑎2

𝟐 
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Quantum Mechanics and Inference 
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Foundations are Important.  
A solid foundation acts as a broad base on which theories 
can be constructed to unify seemingly disparate phenomena. 
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Cox’s 
Approach 

(degrees of 
rational belief) 

Boolean 
Algebra 

Distributive 
Algebra 

Associativity 
& Order 
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THANK YOU 
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