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Notation

I Data: D

I Model: M

I Parameters: Θ

I Likelihood: P(D|Θ,M) = L(Θ)

I Posterior: P(Θ|D,M) = P(Θ)

I Prior: P(Θ|M) = π(Θ)

I Evidence: P(D|M) = Z
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Bayes’ theorem
Parameter estimation

What does the data tell us about the params Θ of our model M?

Objective: Update our prior information π(Θ) in light of data D.

π(Θ) = P(Θ|M)
D−→ P(Θ|D,M) = P(Θ)

Solution: Use the likelihood L via Bayes’ theorem:

P(Θ|D,M) =
P(D|Θ,M)P(Θ|M)

P(D|M)

Posterior =
Likelihood× Prior

Evidence
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Bayes’ theorem
Model comparison

What does the data tell us about our model Mi in relation to other
models {M1,M2, · · · }?

P(Mi )
D−→ P(Mi |D)

P(Mi |D) =
P(D|Mi )P(Mi )

P(D)

P(D|Mi ) = Zi = Evidence of Mi
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Parameter estimation & model comparison
The challenge

Parameter estimation: what does the data tell us about a model?
(Computing posteriors)

Model comparison: what does the data tell us about all models?
(Computing evidences)

Both of these are challenging things to compute.

I Markov-Chain Monte-Carlo (MCMC) can solve the first of
these (kind of)

I Nested sampling (NS) promises to solve both simultaneously.
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Parameter estimation & model comparison
Why is it difficult?

1. In high dimensions, posterior
P occupies a vanishingly
small region of the prior π.

2. Worse, you don’t know
where this region is.

I Describing an N-dimensional posterior fully is impossible.

I Project/marginalise into 2- or 3-dimensions at best

I Sampling the posterior is an excellent compression scheme.
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Markov-Chain Monte-Carlo (MCMC)
Metropolis-Hastings, Gibbs, Hamiltonian. . .

I Turn the N-dimensional problem into a one-dimensional one.
I Explore the space via a biased random walk.

1. Pick random direction
2. Choose step length
3. If uphill, make step. . .
4. . . . otherwise sometimes make step.
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When MCMC fails
Burn in
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When MCMC fails
Tuning the proposal distribution
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When MCMC fails
Multimodality
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When MCMC fails
Phase transitions

L

X



When MCMC fails
The real reason. . .

I MCMC does not give you evidences!

Z = P(D|M)

=

∫
P(D|Θ,M)P(Θ|M)dΘ

=

∫
L(Θ)π(Θ)dΘ

= 〈L〉π

I MCMC fundamentally explores the posterior, and cannot
average over the prior.
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Nested Sampling
John Skilling’s alternative to MCMC!

New procedure:
Maintain a set S of n samples, which are sequentially updated:

S0: Generate n samples from the prior π.

Sn+1: Delete the lowest likelihood sample in Sn, and replace
it with a new sample with higher likelihood

Requires one to be able to sample from the prior, subject to a hard
likelihood constraint.
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Nested Sampling
Why bother?

I At each iteration, the likelihood contour will shrink in volume
by a factor of ≈ 1/n.

I Nested sampling zooms in to the peak of the posterior
exponentially.

I Nested sampling can be used to get evidences!
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Calculating evidences

I Transform to 1 dimensional integral π(θ)dθ = dX

Z =

∫
L(θ)π(θ)dθ

=

∫
L(X )dX

I X is the prior volume

X (L) =

∫

L(θ)>L
π(θ)dθ

I i.e. the fraction of the prior which the iso-likelihood contour L
encloses.
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H

H =
∫
log

dP
dX

dX
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Sampling from a hard likelihood constraint

“It is not the purpose of this introductory paper to
develop the technology of navigation within such a
volume. We merely note that exploring a hard-edged
likelihood-constrained domain should prove to be neither
more nor less demanding than exploring a
likelihood-weighted space.”

— John Skilling
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I Works even if L0 contour is disjoint.

I Need N reasonably large ∼ O(ndims) so that xN is
de-correlated from x1.
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I Novel method for identifying and evolving modes separately.

I Implemented in CosmoMC, as “CosmoChord”, with fast-slow
parameters.
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2 internal knots
Primordial power spectrum PR(k) reconstruction
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3 internal knots
Primordial power spectrum PR(k) reconstruction
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Primordial power spectrum PR(k) reconstruction
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Primordial power spectrum PR(k) reconstruction
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6 internal knots
Primordial power spectrum PR(k) reconstruction
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7 internal knots
Primordial power spectrum PR(k) reconstruction
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8 internal knots
Primordial power spectrum PR(k) reconstruction
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Bayes Factors
Primordial power spectrum PR(k) reconstruction

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

0 1 2 3 4 5 6 7 8

B
ay
es

fa
ct
or

B 0
,N

w
.r
.t
.
Λ
C
D
M

Number of internal knots N



Marginalised plot
Primordial power spectrum PR(k) reconstruction

10−4 10−3 10−2 10−1

k/Mpc

2.0

2.5

3.0

3.5

4.0

lo
g

(1
0

1
0
P R

)
10 100 1000

`

0σ

1σ

2σ

3σ



Object detection
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Conclusions
The future of nested sampling

I We are at the beginning of a new era of sampling algorithms

I Plenty of more work in to be done in exploring new versions of
nested sampling

I Nested sampling is just the beginning

I arXiv:1506.00171
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