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Statistics as applied Probability Theory

Probability Theory: extends deductive logic to situations of
incomplete information (v= “Inference”) [Jaynes, Cox]

Logical propositions, e.g.
A =“There is a signal in this data”
A(ho, f) = “The signal has amplitude hy and frequency f”

P (A|l) = quantifies plausibility of A being true given |
I = relevant background knowledge and assumptions J

1= quantifies an observer’s state of knowledge about A
= not a property of the observed system! (“Mind projection fallacy”)
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(Cox 1946, 1961, Jaynes) Requiring 3 conditions for P (A|l):
(i) P € R, (ii) consistency, (iii) agreement with “common sense”
one can derive unique laws of probability (up to gauge):

The Three Laws

P(All)=1 <« (A]l) certainly true
® P(An<[o.1] { P(AI) =0 <« (Al certainly false

Q P(A|l)+ P(not All) = 1
Q@ P(Aand B|l)= P(A|B, I) P(B|I)

= Bayes’ theorem: P (A|B,I) = P (B|A,I) P( H
v Sum rule: P(Aor B|l) = P(A|l)+ P(B|l) — P(Aand B/
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Bayesian data analysis

: We observe data x, what can we learn from it?
Formulate “question” as a proposition A and compute P (A|x, I)

The 'standard’ GW hypotheses

Hg : data is pure Gaussian noise: x(t
Hs : data is signal + Gaussian noise: x(t) =

N—"
I

@ signal parameters, e.g. 6 = { masses, spins, position ...}
@ Data from several detectors: x = {x"! xt! ..}
@ Gaussian noise pdf: P (n|Hg) = x e~ 2(nn)
v “matched-filter” scalar product (x|y) = [ %}(’ﬂm df
i gssumes known (i.e. estimated) noise PSDs S, (f)
(alternative: marginalize)
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Bayes factor |

: Given data x, what can we learn about Hg and Hs?
Two possibilities:

@ Complete set of hypotheses: directly compute P (Hs|x, /)
© Alternative: relative probabilities (“odds”):

P(Hslx) _ P(x[#s) P (Hs)

= X

P (Ha|x) P (x[Hg) P(Hg)’
——— —— ~———r
Posterior odds  Bayes factor Bs /g prior odds

Os/6(X)

w5 Bgg(X) “updates” our knowledge about Hs/Hc
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Bayes factor |l

: How to deal with unknown signal parameters = ?

Likelihood ratio (function):
P (X’/Hs, 9)
P (x|#c)

exp | (xIh(8)) - 5 (RN

L(x;0) =

Laws of probability === “marginalize”:

BsG(x) /5 P (0|Hs) do

“Orthodox” maximum-likelihood (ML) approach:

Lym(X) = max L(x;0)
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Bayesian parameter estimation

: What can we learn about signal parameters = ?
ez directly compute posterior probability P (6|x, Hs)

PO, Hs) x  L(x;0) x P(0|Hs)
—— —— ————

posterior likelihood function prior

: What can we learn about a subset of parameters  ?
0 = {A, \} = “marginalize” over “uninteresting” parameters A:

P(/\]Hs,x)_/P(A,/\]Hs) dAocfc(x;e)P(ems) dA
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Summary: Bayesian data analysis — strengths and weaknesses

Bayesian probability is the “perfect machine” for data analysis,
but the difficulty lies in
@ choosing the “right” inputs:
hypotheses #,;, priors P (0|H), ...
r= What do we (really) know?
= How to quantify/formalize it?

@ evaluation: can write down “optimal answer”, but may be

e impossible to compute

e much slower than an efficient “ad-hoc” statistic

e not more detection power than empirical/ad-hoc
approaches

= use wisely ...
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Compact Binary Coalescence (CBC)

@ sources: inspirals of compact objects (NSs, BHs)
@ strong (fy ~ 10 2) & short ~ O (s)
@ approximate waveforms from GR

@ sources: all GBG sources + supernovae, GRBs, ..
o strong (fy ~ © (10-21))

o short ~ O(s)

@ minimal assumptions on waveform

Continuous Waves (CW)

o o e e

@ sources: rotating, non-axisymmetric neutron stars e
© weak (/1 < 10-2) g )
@ long-lasting (days — years): integrate to gain SNR x /T £ msss

@ quasi-periodic, sinusoidal waveform T4 s DEFCER N

o signal phase- and amplitude- modulated g mnar
ace resolution (number of templates) grows  § 2%\
AN x T"withn = 5 Fromonnr .
— sensilivity limited by finite computational power § 1onom o
= semi-coherent methods. . . ¢ " :

Stochastic gravitational waves

Credit: NASA { WMAP

@ sources: cosmological (big bang) or “background” of BBHs

@ weak, long-lasting, all directions, all frequencies,
power-spectrum

@ looking for correlated GW signals between detectors
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Detection/Discovery

Hanford, Washington (H1) Livingston, Louisiana (L1) Highly empirical/non-Bayesian:

s | o . A
:"AWWMW""W’\[)\ ﬁ\fﬁ\‘ﬂ‘wﬂ“ 2 detection pipelines (PyCBC, GstLAL)
PRt ‘ il = @ per-detector matched-filter SNR py; 1.1
H | 1 @ “goodness-of-fit” re-weighting (e.g. x2) == A1 11
o keep coincident “triggers” (5 >threshold) within
15 ms
. @ combined ranking statistic 5% = ﬁfn + ﬁfl
%256 ::? @ what is the noise distribution / “background” ?
U‘: / .3 = time-slides / interpolated detector trigger
£y distribution
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CBC: [fully Bayesian] Parameter estimation

@ 15 parameters ¢ for full signal waveform:

@ 8 intrinsic: masses, spins
@ 7 extrinsic: sky-position, distance, orientation, time and phase

@ = Compute P (9|Hsg, X): using stochastic samplers
@ Markov Chain Monte Carlo (MCMC)
@ Nested sampling

@ Two families of “physical” waveforms (tuned against NR)

[~ ] marginalize over calibration uncertainties

= real showcase application of Bayesian methods!

= Gravitational-wave “astronomy” is fully Bayesian!
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‘Unmodelled’ reconstruction

@ relax assumption about inspiral waveform

@ superposition of arbitrary number of sine-Gaussians
“wavelets”

@ Bayesian ('BayesWave’) reconstruction of waveform

@ agrees very well (~ 94%) with best-matching CBC

waveform
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GW150914: QNM ringdown

Surprise: GW150914 had a 'visible’ ringdown post-merger!

Bayesian parameter-estimation and evidence for damped sinusoid starting at f:

h(t)y=Ae” "7 cos(2rf(t— )+ ¢g)
= analytically marginalize { A, ¢}, search {f, 7} at fixed £,

GR/NR: QNM ringdown frequency f expected to be stabilized ~ 10 — 20M ~ 3.5ms — 7ms after merger
posterior estimates of ringdown frequency and damping time consistent with GR prediction

need > 2 ringdown modes to test Kerr/no-hair theorem
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Tests of general relativity

Express GR waveform in
terms of post-Newtonian
and phenomological W
(merger+ringdown) ANENE i .
coefficients. Test non-zero "

deviations from GR as 2
“alternative hypothesis”,
estimate relative deviations:
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Continuous gravitational waves (CWs)

Source frame A?
Dope(7) = 270 (.f T+ ifr?4 ) V4 Neutron

. Fstar
" %

- Detector frame
B et (1) = Pore (7(t577))

@ Phase-evolution parameters. A= {A,f,f,.. .}
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Glasgow Bayesian known-pulsar ULs

@ in use since first LIGO science run (S1) [2004]

@ Bayesian parameter-estimation pipeline for amplitude
parameters { hy, cos ¢, 1, ¢o} for known X\ (sky-position,
frequency, spindown, ...) [Dupuis, Woan PRD72 (2005)]

@ set 95% credible ULs on hy from posteriors
@ most sensitivity search / ULs on known pulsars
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Frequentist/orthodox approach: optimal statistic?

Simple hypotheses (- known): Neyman-Pearson lemma

“Optimal’:= highest detection probability at fixed false-alarm

= Likelihood ratio is optimal: £(x; A) = Pf;&?ﬁgf)‘)

Unknown amplitude parameters F-statistic
[Jaranowski, Krélak, Schutz, PRD58 (1998)]
change A-coordinates: A" = A*(hg, cos ¢, ¢p)

Likelihood ratio £(x; A) o< exp[— A M, AY + A x,,]

w Can analytically maximize £(x; A) over A":

Ly(x) = max L(x; A") = e7™)
{a}

@ widely-used CW statistics
o efficient (FFT) implementation, no explicit search over A
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Bayesian “re-discovery” of the F-statistic

Bs,o(x) / L(x: A) P(A[Hs) d*A
———
A—prior
simplest choice: flat A*-prior: P (A"|Hs) = const

— Br(x //LxA“)d“A“oce()

= ML F-statistic is equivalent to Bayes factor with flat .A*-prior!

What is the “right” -prior?
Ignorance prior in physical coordinates {hg, cos ¢, ¢ ¢o}:

@ initial phase = uniform in ¢q

@ NS orientations equally likely Eat
isotropic = uniform in {cos, ¢’}

@ hg: astrophysical prior or simplicity
oc {hg™*, hg~", const}
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JF-statistic prior in physical coordinates:

P (A|Hs, flat{ A" ho®
(AlHs, flat{A"}) o 0

favors strong signals
“unphysical” in {hp,cost}: X
uniformin {¢, o }: v

1 —= T
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Bayes factor with “physical” -priors: “B-statistic”

B(x) /E(X; A) dhy dcos « dvy degg

Inject signals with uniform P (cos ¢, ), ¢o|Hs) at fixed SNR=4

<
o0

e
=y

04 -

<
o

detection probability n =1 — fp

O ! !
0.001 0.01 fa 0.1 1

. F-gtatistic is not N-P “optimal” [prix, Krishnan, CQG26 (2009)]
= drawing from priors — Bayes-factor is N-P optimal!
[A. Searle, arXiv:0804.1161 (2008)]
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Summary: F-statistic versus Bayes factor

@ classical maximume-likelihood F-statistic can be interpreted
as a Bayes factor, but with an unphysical implicit prior
[similar for burst searches: Searle, Sutton, Tinto CQG 26 (2009)]

@ physical priors result in optimal Bayes factor B(x), but

@ gains in detection power rather minor
e computing cost impractical (humerical .A-integration)
v F-statistic is a practical & efficient B approximation!

@ Viewing e’ as a Bayes factor allows for better

interpretation and extensions = line-robust statistics
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Can we make F more robust vs “line” artifacts?

Problem with Os 6 (x) = P (Hs|x) /P (Hg|x) oc €7

Anything that looks more like Hgs than Gaussian noise Hg can
result in large O/, regardless of its “goodness-of-fit” to #s!
e.g. quasi-monochromatic+stationary detector artifacts (“lines”)

Alternative hypothesis #; to capture “lines”
“Zeroth order” simple line model:

H;, = data x consistent with signal in only one detector
= [(Hg and H%) or (Hé and H%)}
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Extended odds: “line-robust” detection statistic

Use simple F-statistic priors P (A*|H) = const:

O () = sl i
S/GL = P (Hg or Hy|x) & eF« +p]1 o7 (x1) —l—,Of e72(x2)

[Keitel et al, PRD89 (2014)]

@ recent “transient” extensions: [Keitel, PRD93 (2016)]
= robust against transient lines (tL): Os/gLa
= sensitive to transient signals (tS): Ois /gL

@ arbitrary prior cutoff hy,x leads to a “tuning parameter” F,
= eliminate F. by using more physical prior approximation
e.g. P(A“‘Hs) X efAz/ZU [work in progress]
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detection efficiency

ho/S[1/T7]
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Conclusions

Bayesian methods are gaining ground in GW searches ...
X Search/detection/"confidence” relies most heavily on
empirical/frequentist methods

v Estimation of signal parameters and astrophysical rates
(“GW astronomy”) fully Bayesianized (CBC+CW)

Various tests of General relativity

Bayes factor with alternative hypotheses used in CW
searches to be more robust versus detector artifacts

(Os/aL, Os/oLies Ois/oLi)

1= Help us find GWs and join Einstein@Home! ((\@ elrﬁg%g
https://einsteinathome.org Q
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Extra slide

Bayes-factor self-consistency relation

B. . — P(xlts) _ P(BsglHs)
816 = P (x[Ha) P (Bsc|Ha)

r= “Bayes factor predicts its own relative frequencies!”
[Prix, Giampanis, Messenger PRD84 (2011)]
—

Py . PRDB4 023007 (2011)
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