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MOTIVATION- COMPLEX SYSTEMS

To classify complex dynamical systems
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THE GOAL

To classify complex dynamical systems

s1 system classes

?

s2

?

s3

?

d data

0 5 10 15 20
time [2π/ω]

−1000

−500

0

500

1000

1500

x
(t

)
[m

]



5

INTRODUCTION MODEL TRAINING MODEL SELECTION CONCLUSION

BAYES THEOREM

”Information is what forces a change in belief” by Caticha

P(s | d) =
P(d | s)P(s)
P(d)
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STOCHASTIC DIFFERENTIAL EQUATION (SDE)

oscillating dynamical systems

d2x (t)
dt2 + γ

dx (t)
dt

+ ω2x (t) = F (t)

Operator form

xt = R(s)
tt′ ξt′

(
R(s)

tt’

)−1
= δ(2)

(
t− t′

)
− γtδ

(1) (t− t′
)

+ ω0 eβtδ
(
t− t′

)
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STOCHASTIC DIFFERENTIAL EQUATION (SDE)
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TRAINING DATA
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CONSTRUCTION OF THE LIKELIHOOD

βt γt

s signal field

R(s) Response operator

xt training data
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THE LIKELIHOOD OF A SDE

βt γt

s

R(s)

xt

P(x|s) = G
(

x,R(s)†ΞR(s)
)

I temporarily structured
covariance

I characterizes a
non-stationary processes
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THE PRIOR

τβ τβ

βt γt

s

P(βt|Ω) = G (βt,Ω)

assuming statistical stationarity:

Ω =
∑

k

eτkΩk
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A HIERARCHICAL PRIOR MODEL

αβ, qβinverse Gamma Distribution

P(eτ |α, q)

σβ smoothness enforcing

P(τ |σ)

τβ

βt
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THE MODEL TRAINING
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TRAINING DATA
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RECONSTRUCTED βREC
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RECONSTRUCTED γREC
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RECONSTRUCTED P(k)
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MODEL SELECTION

d = ROBSx + n = ROBS R(s) ξ + n

s s1 s2 s3

R(s)

xt

d

classification

P(si|d) = P(d|si)P(si)
P(d)
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THE BAYESIAN NETWORK OF DSC
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MODEL SELECTION- THE SYSTEM CLASSES
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TEST CASE- SNR= 10

∆i,j = logP(d|si)− logP(d|sj)
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TEST CASE- SNR= 0.01

∆i,j = logP(d|si)− logP(d|sj)
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PERFORMANCE OF DSC

∆i,j = logP(d|si)− logP(d|sj)

SNR=0.01 ∆i,j=1 ∆i,j=2 ∆i,j=3
ds1 0 -6 -5
ds2 -8 0 -10
ds3 0 0 0
SNR=0.1
ds1 0 -144 -55
ds2 -151 0 -139
ds3 -1 -12 -0
SNR=10
ds1 0 -4352 -1757
ds2 -6355 0 -5724
ds3 -60 -136 0
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CONCLUSION

I DSC algorithm is established:
1. Analyzes training data from system classes to construct

abstract classifying information
2. Confronts data with the system classes, to state the

probability which system class explains observations best

I The classification ability of the DSC-algorithm has
successfully been demonstrated in realistic numerical tests

I The DSC-algorithm should be applicable to a wide range
of model selection problems



Thanks for your attention!
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CLASSIFICATION- THE LIKELIHOOD

d = ROBSx + n = ROBS R(s) ξ + n .

P(d|si) =

∫
DxP(d|x)P(x|si)

=

∫
Dx G (d− ROBSx,N)

× G (x,R(s)† Ξ R(s))

∝ 1√
|D|

exp
(

1
2

j†Dj
)

with
j = R(s)†R†OBSN−1d

and
D−1 = R(s)†R†OBSN−1ROBS R(s) +Ξ−1.
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