INTRODUCTION MODEL TRAINING MODEL SELECTION CONCLUSION
: :

Dynamic system classifier

Daniel Pumpe, Maksim Greiner, Ewald Miiller,
Torsten Enfslin

22.01.2016

Max-Planck-Institut
fiir Astrophysik



INTRODUCTION MODEL TRAINING MODEL SELECTION CONCLUSION

OUTLINE

INTRODUCTION

MODEL TRAINING

MODEL SELECTION

CONCLUSION

N



INTRODUCTION MODEL TRAINING MODEL SELECTION CONCLUSION
: :

MOTIVATION- COMPLEX SYSTEMS
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THE GOAL

To classify complex dynamical systems
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BAYES THEOREM

”Information is what forces a change in belief” vy caticha
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STOCHASTIC DIFFERENTIAL EQUATION (SDE)

oscillating dynamical systems

d?x (t) dx (t)

oI e + wx () = F(t)
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STOCHASTIC DIFFERENTIAL EQUATION (SDE)

complex dynamical systems
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CONSTRUCTION OF THE LIKELIHOOD

signal field

Response operator

@ training data
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THE LIKELIHOOD OF A SDE

OWNO

P(x|s) =% (x, RO ER(S))

» temporarily structured
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THE PRIOR
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A HIERARCHICAL PRIOR MODEL

inverse Gamma Distribution ag, 4a
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THE MODEL TRAINING
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MODEL SELECTION

d= ROBSx +n= ROBS R(S) f +n
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THE BAYESIAN NETWORK OF DSC
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MODEL SELECTION- THE SYSTEM CLASSES

0 5 10 15 20 0 5 10
time [27 /o] time [2/co]

20



INTRODUCTION MODEL TRAINING MODEL SELECTION CONCLUSION

TEST CASE- SNR= 10

Ajj =logP(d|s;) — log P(d|s;)
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TEST CASE- SNR= 10

Ajj =logP(d|s;) — log P(d|s;)
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TEST CASE- SNR= 0.01

A;j =logP(d|s;) — log P(d|s;)
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PERFORMANCE OF DSC

A;j =logP(d|s;) — log P(d|s;)

SNR=0.01 Ai,j:l Ai,j:Z Ai,j:3
d, 0 -6 -5
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CONCLUSION

» DSC algorithm is established:
1. Analyzes training data from system classes to construct
abstract classifying information
2. Confronts data with the system classes, to state the
probability which system class explains observations best
» The classification ability of the DSC-algorithm has
successfully been demonstrated in realistic numerical tests

» The DSC-algorithm should be applicable to a wide range
of model selection problems
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CLASSIFICATION- THE LIKELIHOOD

d= Rogsx—l-i’l—ROBsR §+n

P(d]si) = / DxP(dx)P(x]s;)
= /Dx g(d — ROBsx, N)

x %(x,R®=R)

1
it
X —— exp ( = D])
VD] 2
with ;
j=RORE N
and

D! = RO'RL. N"TRops R®) +8-



	Introduction
	Model Training
	Model selection
	Conclusion

