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Validation Concept

WHY is posterior validation needed?

⇒ Increasing level of complexity in Bayesian posterior
calcuations prone to errors:

Mistakes in the numerical implementation/ insufficient
numerical precision

Analytic approximations (denoted by ∼) in the posterior
derivation might influence the posterior:

P (s|d) =
P (d|s)P (s)

P (d)
≈ P̃ (s|d)
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Validation Concept

DIP – procedure:

1 Sample values of sgen from the prior P (s).
2 Generate data d for every sgen according to P (d|sgen).
3 Calculate a posterior curve for given data by determining
P̃ (s|d).

4 Calculate the posterior probability for s ≤ sgen according to

x :=

∫ sgen

−∞
ds P̃ (s|d) ∈ [0, 1] . (1)

5 If the calculation of the posterior was correct, the
distribution for x, P (x), should be uniform1 between 0 and
1.

1for proof see S. Dorn et al., Phys.Rev.E.88.053303
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DIP test: correct posterior (1D)
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Validation Concept

DIP test: incorrect posterior (1D)

⇒ What informations are encoded in the dip of the histogram?
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Error Diagnostics

DIP TEST
– Error diagnostics –
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Error Diagnostics

Henceforth we consider:

s ∈ R
Gaussian posteriors (similar effects for other pdf’s),

P (s|d) = G(sd, σ
2) :=

1√
2πσ2

exp

(
−
s2
d

2σ2

)
,

with sd = s− s̄d and s̄d the data dependent maximum of
the posterior and
a wrongly determined value

xε =

∫ sgen

−∞
ds P ε(s|d),

where P ε(s|d) is the distorted Gaussian.
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Error Diagnostics

Wrong variance

P ε(s|d) =
1√

2πσ(1 + ε)
exp

(
−

s2
d

2σ2(1 + ε)2

)

with ε > −1. For P (x) we obtain2

P (x) = (1 + ε) exp
(
−
[
erf−1 (2x− 1)

]2 [
(1 + ε)2 − 1

])

2see S. Dorn et al., Phys.Rev.E.88.053303
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Error Diagnostics

Wrong variance
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Error Diagnostics

Wrong skewness

P ε(s|d) =
1√
2πσ

exp

(
−
s2
d

2σ2

)(
1 + erf

(
εsd√
2σ

))
.

For P (x) we obtain

P (x) =

{
1/ (2

√
x) if ε = 1

1/
(
2
√

1− x
)

if ε = −1
.
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Error Diagnostics

Wrong skewness
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Error Diagnostics

Wrong maximum position

P ε(s|d) =
1√
2πσ

exp

(
−(sd − ε)2

2σ2

)

For P (x) we obtain

P (x) = exp

(
−1

2

( ε
σ

)2
−
√

2
( ε
σ

)
erf−1 (2x− 1)

)
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Error Diagnostics

Wrong maximum position
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Error Diagnostics

Wrong normalization

P ε(s|d) =
1√

2πσ(1 + ε)
exp

(
−
s2
d

2σ2

)

For P (x) we obtain

P (x) = 1 + ε for x ∈ [0, 1− ε].
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Error Diagnostics

Wrong normalization
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Error Diagnostics

What have we gained?

⇒ Connection between graphical effects & error-types of
posteriors distortions

Graphical effect Error-type
Flat distribution –
“∪-(∩-)shape" variance under-(over-)estimated
x = 0 (x = 1) enhanced,
purely left curved too neg. (pos.) skewed
x = 0 (x = 1) enhanced,
left & right curved too large (low) max. postition
x-interval smaller
(greater) than one too large (low) normalization

⇒ Quantitative errors on posterior pdf become estimateable
→ fitting formulae P (x).
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DIP TEST
– Example in 2D –
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Example

Remark: DIP test in higher dimensionen

Considering P (t|d), t ∈ Rm, m ∈ N

Histogram generation requires 1D posterior
⇒ map P (t|d) onto 1D, by

P (s|d) =

∫
Dt P (s|t, d)P (t, d).

Infinitely many ways to perform this mapping
⇒ a suite of tests are needed to probe P (t|d).
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Example

Hierarchical model in 2D: Data model

white noise: n←↩ G(n|N); mean: m←↩ G(m|M)

variance:

I
(
σ2, α, q

)
:=

qα

Γ(α)
σ2−α−1 exp

(
− q

σ2

)
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Example

Hierarchical model in 2D: Inference
1 The posterior calculation for m,σ2 yields

P
(
m,σ2|d

)
=
G(m,M) I

(
σ2, α, q

)
G
(
d−m,σ2 +N

)∫∞
0 dσ2 I (σ2, α, q) G (d, σ2 +M +N)

.

2 Artificial inclusion of an error by setting α→ α(1 + ε)

3 Mappings onto 1D:

P
(
σ2|d

)
=

∫
Dm P (m,σ2|d)

P (m|d) =

∫ ∞
0

dσ2 P (m,σ2|d)

4 Perform DIP test for the mapped posteriors.
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Example

Hierarchical model in 2D: Results
α = 2, q = 1, M = 1, N = 0.1 and ε = 0.3
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Figure: Left (right) histogram shows the unnormalized distribution of
500 x-values within eight bins as calculated from the m- (σ2-)
marginalized posterior. Fit: Skewness fitting formula with ε = 1.
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CMB APPLICATION
– Introduction to CMB non-Gaussianities –
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Introduction to CMB non-Gaussianities

Planck (SMICA) CMB map

source: Planck 2013 results. I.
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Introduction to CMB non-Gaussianities
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Introduction to CMB non-Gaussianities

CMB TEMPERATURE ANISOTROPIES
– Statistics of the temperature anisotropies –
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Introduction to CMB non-Gaussianities

Characterization:

Primordial graviational potential φ→ ∆T/T is well
described by a Gaussian distribution, i.e.

φ←↩ G(φ,Φ) :=
1√
|2πΦ|

exp

(
−1

2
φ†Φ−1φ

)
.

Φ: 2-point function (covariance operator)

If φ purely Gaussian, statistics are determined by the
two-point function.

However, there are deviations from Gaussianity!
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Introduction to CMB non-Gaussianities

Origins of non-Gaussianity:

1 primordial sources
Gaussian quantum fluctuations δφ

↓
non-linear inflation dynamics & non-linear GR

↓
non-linear gravitational potential (curvature perturbation)
ϕ(δφ, δφ2, . . . )→ ∆T/T

2 non-primordial sources:
instrumental effects
residual foregrounds and point sources
2nd order gravity effects
secondary CMB anisotropies, e.g. ISW, SZ, grav. lensing
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Introduction to CMB non-Gaussianities

Characterization of non-Gaussianity:

→ need higher moments to describe deviations from Gaussianity

→ lowest order: three-point function / bispectrum:

〈ϕ(k1)ϕ(k2)ϕ(k3)〉(ϕ|Cl)

= (2π)3 δ(3)(k1 + k2 + k3)︸ ︷︷ ︸
triangle configuration

× fNL︸︷︷︸
strength

×Fϕ(|k1|, |k2|, |k3|)︸ ︷︷ ︸
shape of triangle
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Introduction to CMB non-Gaussianities

Local non-Gaussianity:

The squeezed (local) shape of the bispectrum is defined as:
k1 � k2 ≈ k3

𝒌𝟐 

𝒌𝟑 

𝒌𝟏 

For this local shape:

∆T

T
← ϕ = φ+ fNL

(
φ2 −

〈
φ2
〉

(φ|Φ)

)

fNL: non-Gaussianity parameter
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Introduction to CMB non-Gaussianities

CMB APPLICATION
– Posterior derivation –
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Posterior derivation

d =
∆Tobs
TCMB

= Rϕ+n
local type

= R
(
φ+ fNL

(
φ2 −

〈
φ2
〉

(φ|Φ)

))
+n
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Posterior derivation

How can we reconstruct fNL from given data d?

How likely is the resulting fNL?

→ requested quantity: posterior P (fNL|d)

→ used framework: information field theory
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Posterior derivation

fNL-posterior:

P (f |d) ∝ P (d|f)P (f)

∝
∫
Dφ P (d, φ|f) =

∫
Dφ exp(− H(d, φ|f)︸ ︷︷ ︸

contains terms ∝ φ4

)

(f = fNL)

→ Impossible to perform path integration analytically!
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Posterior derivation

Solution:

Taylor expansion of H in φ because:

φ ∝ O(10−5) and P (φ ≈ 1) ≈ 0 !

around m = arg min(H(d, φ|f))

up to 2nd order in φ
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Posterior derivation

P (f |d) ≈
∫
Dφ exp

(
−
(
H(d,m|f) +

1

2
(φ−m)†D−1

d,f (φ−m)

))
Dd,f : inverse Hessian of H(d, φ|f)|φ=m

↓

Final fNL-posterior:

P (f |d) ∝ |2πDd,f |
1
2 exp(−H(d,m|f))

→ No numerically expensive sampling techniques necessary!
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CMB APPLICATION
– Posterior validation –
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Posterior validation

Example: Sachs-Wolfe-limit

From now on we consider

Nxy = σ2
n δxy

R(x, y) = −1/3 δ(x− y)

and study 1D-, 2D- flat sky and all sky toy-cases.

Φ(l,m)(l′,m′) = (Cl)CMB δll′δmm′ .
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Posterior validation

Shape of the posterior (1D toy case)
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Posterior validation

Shape of the posterior (1D toy case)
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Posterior validation

Sachs-Wolfe limit – 500 data realizations
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Summary of the DIP test:
DIP is a powerful posterior validation method
Error diagnosis is possible
Fitting formulae to estimate influence on posterior
distribution
Inspection by eye

Summary of the fNL parameter:
We derived a PDF for the fNL parameter
Precision of the posterior was validated (DIP–test)
in the large-scale limit (1D, 2D)
Gaussian shape of the PDF for small values of fNL
Monte Carlo sampling isn’t necessary



DIP CMB Application Concluding remarks

Thank you for paying attention!

DIP-test:
S. Dorn et al., Phys.Rev.E.88.053303 (2013)

fNL-posterior:
S. Dorn et al., Phys.Rev.D.88.103516 (2013)
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