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Photometric Redshift Techniques

Techniques
• Phenomenological (PolyFit, ANNz, kNN, RF)

– Simple, quite accurate, fairly robust
– Little physical insight, difficult to extrapolate, M- bias

• Template-based (KL, HyperZ…)
– Simple, physical model
– Calibrations, templates, issues with accuracy

• Hybrid (‘base learner’)
– Physical basis, adaptive
– Complicated, compute intensive



Training the Bases



Hubble Deep Field

initial Hybrid + 30 iterations



Accuracy of SDSS PhotoZ

• At least 5 groups computed SDSS photoz
– JHU/Hungary, Fermilab, NYU, Lahav, Sussex

• Comparison by Celine Eminian (Sussex)
• Most techniques perform at about the same level

– Getting to 0.025 easy, beyond it is getting hard

  Main LRG

Kphotoz(*) 0.028 0.022

ANNz 0.019 0.022

photoz1 0.029 0.025

photoz2 0.023 0.026



SDSS PhotoZ

• Spectro sample (670K unique galaxies in DR5):
– Main rpet<17.77

– LRG color cut, about 1 mag fainter, 5% of total

• Photometry (132M primary galaxies)
– Out of these 21M is rpet<20.77

• Photoz for LRG is much better
• Currently two different versions stored in the DB



SDSS Main Sample



Recent Developments

• “Unified theory” of photometric redshifts (Budavari 2010)
– Not a regression problem
– Kernel density estimators, constrained by model priors

• Random Forests at JHU
– S. Carliles, C. Priebe, A. Szalay, T. Budavari, S. Heinis (2009)
– Slightly better than other estimators
– Estimated errors close to Gaussian, and accurate

• Physically motivated removal of various systematics
– Inclination   Self Absorption in a galaxy  (Yip et al 2011)

– Effect of emission lines



Unified Theory of Photoz

• Tamas Budavari, Ap.J., 695, 747 (2009)

• Bayesian approach to photo-z
• Essentially all existing techniques are a limiting case



• The general inversion problem
– Constrain various properties consistently

– Propagate uncertainties and correlations

• Estimates are secondary
– Probability density functions instead

– Scientific analyses to use the full PDFs

Photometric Inversion
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• Training and Query sets with different observables

• Model yields observables for given parameter
– Prediction via                        and has prior
– Also folds in the photometric accuracy

• We are after 

A Unified Framework

T. Budavari



Connecting the Observables

• The model provides the probability density

       with

• Think empirical conversion formulas but better

– For example, from UJFN to ugriz with errors

T. Budavari



• Usually just assume a function
– Wrong! We know there are degeneracies…

• There is a more general relation
– Usual restriction is
– Correct estimation

Empirical Relation
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• The final constraint is

• Estimate by the mean
– If the result is unimodal (no guarantee)

Properties of Interest

T. Budavari



• Artificial training set
– From a grid of model points
– No errors

• Analytic result

Template Fitting
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• Minimalist model
– Normal distributions, same quantities:              and

– With simple prior, the mapping is analytic , e.g., for flat

• Empirical relation
– Fitting function as before or rather 

– General relation from densities

• Numerical summation over neighbors    →

Improved Empirics
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It works!
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Red Galaxies
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Blue Galaxies
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• Mapping observables via models
– Any complete basis on wavelength range
– Physics in the prior

• Relation of properties
– Conditional densities

• Empirical but with templates
– Unified framework at its best

Advanced Methods
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• Upcoming photometric surveys = tons of data
– Have to make best use of them: Bayesian 

inference

• Objective evidence for associations
– Probabilities from ensemble statistics

• Photometric inversion from first principles
– Old methods in the limits

– Suggests new techniques

Summary
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Random Forest

• Recent effort at JHU
– S. Carliles, C. Priebe, A. Szalay, T. Budavari, S. Heinis

• RF: Leo Berman and Adele Cutler
• Create many (~500) random subsamples of training 

set (about 2/3 each)
• Build a piecewise linear regression Tree for each
• These Trees make up the Forest: each provides an 

estimated parameter value  probability distribution

• Their mean and sigma is the value and error of the
final estimate  robust!

• Why does it work?



Very promising

• Consistent estimation of value and its error
• Good scatter vs training set size
• Very few outliers
• Mix of MAIN and LRG
• No χ2<2 clipping
• 100k training set:
    MSE=0.023 MAE=0.017

-> 0.015 with clipping
• 10k training set
    MSE=0.026 MAE=0.019

              deltaZ vs zPred =>



Zspec vs Zrf

Carliles et al 2009
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Photo-z Bias vs. Galaxy Inclination

• Edge-on galaxies  are 
redder, mimic higher 
redshift  galaxies

• Photo-z bias is -0.02 for 
face-on galaxies

• SDSS disk galaxiess, 
Spec-z = 0.065-0.075, 
a 30% effect!

• Once axial ratio is
included in RF training, 
bias goes away

C-W Yip et al. 2011 



Cyberbricks

• 36-node Amdahl cluster using 1200W total

• Zotac Atom/ION motherboards
– 4GB of memory, N330 dual core Atom, 16 GPU cores

• Aggregate disk space 43.6TB
– 63 x 120GB SSD        =    7.7 TB
– 27x 1TB Samsung F1 = 27.0 TB
– 18x.5TB Samsung M1=   9.0 TB

• Blazing I/O Performance: 18GB/s
• Amdahl number = 1 for under $30K
• Using the GPUs for data mining:

– 6.4B multidimensional regressions (photo-z) in 5 minutes 
over 1.2TB of data

– Running the Random Forest algorithm inside the DB



Why Does it Work?

• Robustness: 
– There are always bad points in the training set
– Through the random sampling (~50%) these only make it 

into half of the neighborhoods
– Whenever a bad point is there, estimator is on the tail
– Whenever bad point is missing, Gaussian

• Gaussianity:
– Through the sampling and averaging, we are creating a new 

random variable with much better statistical properties than 
the original estimates with a high skewness and kurtosis

– Central Limit Theorem at work
– The main question is, in which dimension are we 

approaching the asymptotic limit?



Simple Analytic Model of RF

Definitions

• Training data with smooth trends removed,  i=1..N

• Residuals xi, with zero mean and second moment

• Sampling rate f   

• Regression trees t=1..T

• Leaf nodes have exactly M points



Estimator for a Query Point

• Consider a single query point

• In each tree there will be a single leaf node 
containing it

• The estimator from a given tree is calculated as the 
mean of its M neighbors

• wti are the weights (0,1), adding up to M, marking the 
members of the particular leaf node
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Many Trees: Forest

• The ensemble average over many trees gives

    (since x has zero mean)

• The xi are independent random variates, thus
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Averaging the Weights

• Once we consider a large number of trees, each 
point has a probability pi that it participates in a leaf 
node for our query point

• The weights will have a multinomial distribution (we 
draw M points out of N with pi probability), thus

• Summing over all the points
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The Effective Bandwidth

• Here ρ2 =1/ν is the “effective bandwidth of the kernel 
arising from the local neighborhoods

• ν is the effective degrees of freedom
• The variance of the estimator is

• The effective degrees of freedom will depend on the 
sampling rate

• For this toy model there is no bias error, as we 
assumed a zero mean. For a real use case there will 
be an optimum bandwidth, like for an adaptive kernel
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The Forest Estimator

• The different trees are obviously correlated

• The forest estimator and its variance
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The Variance

• Using the tree estimator variance and covariance

• The variance mostly depends on ν, and only weakly 
on the forest size T, as seen in our experiments
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Summary

• A simple analytic toy model shows how the Central 
Limit Theorem creates an asymptotically Gaussian 
estimator for the RF

• The Random Forest technique approximates a kernel 
density estimator based integration over the training 
set

• The convergence primarily depends on the size of 
the kernel, i.e. the sampling rate

• There has to be an optimum bandwidth, possibly 
variable over our photo-z domain

• The RF photo-z very closely resembles the Budavari 
implementation for the Bayesian photo-z 
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