Gamma 2008 Heidelberr

Interstellar radiation over 20 decades of energy

Andy Strong MPE Garching

with

Igor Moskalenko Troy Porter

Seth Digel Elena Orlando Laurent Bouchet Brenda Dingus

viewpoint : cosmic-ray production & propagation in the Galaxy

The **goal** : use *all* types of data in self-consistent way to test models of cosmic-ray propagation.

The Basis:Cosmic-ray propagation

 $\partial \psi$ (<u>r</u>, p) / $\partial t = q(\underline{r}, p)$ cosmic-ray sources (primary and secondary)

+
$$\nabla$$
 (D $_{xx}\nabla\psi$ - $v\psi$)
diffusion convection

+ $\partial / \partial p [p^2 D_{pp} \partial / \partial p \psi / p^2] = D_{pp} D_{xx} \sim p^2 v_A^2$ diffusive reacceleration (diffusion in p)

$$\begin{array}{c} -\psi \ /\tau_{\rm f} \\ -\psi \ /\tau_{\rm r} \end{array}$$

nuclear fragmentation radioactive decay

Model for cosmic-ray propagation

3D gas model based on 21-cm (atomic H), CO (tracer of H_2) surveys cosmic-ray sources $f(\underline{r}, E)$ interstellar radiation field $f(\underline{r}, v)$ nuclear cross-sections database energy-loss processes **B**-field model

 γ – ray, synchrotron

GALPROP code: publicly available with dedicated Website galprop.stanford.edu

Reference Model for GLAST

Gas Rings: HI Inner & Outer Galaxy

Seth Digel'05

Interstellar Radiation Field (for electron dE/dt, inverse Compton γ-rays): new model (*Troy Porter, UCSC*)

New ISRF using latest information

stellar populations, dust radiative transfer

Key data : primary cosmic-ray nuclei spectra

Key data cosmic-ray secondary/primary ratios: e.g. Boron/Carbon probes cosmic-ray propagation parameters

flux

Energy-dependent diffusive reacceleration produces <u>bump</u> in particle spectrum

Peak in B/C can be explained by **diffusive reacceleration** with Kolmogorov D ~ β p ^{1/3}

Key data III: Radioactive nuclei: cosmic-ray clocks set limits on size of Galactic halo

recent data: ACE, ISOMAX

¹⁰Be decays in 10⁶ years, ⁹Be is stable so ratio sensitive to cosmic-ray confinement time, halo size

Hams et al. 2004 ApJ 611, 892

plain diffusion

0.35 0.35 B/C ratio PD model 0.3 $\Phi = 450 \text{ MV}$ 0.25 0.25 0.2 Voyager 0.15 0.15 Ulysses O ACE LIS 0.1 ▲ HEAO-3 □ Chapell,Webber 1981 Dwver 1978 0.05 0.05 ∇ Maehl et al. 1977 44-99972 0 10⁻² 10^{-1} 10^{2} 10^{0} 10^{1} 10³ Kinetic energy, GeV/nucleon

diffusive reacceleration

B/C ratio

LIS

 10^{-1}

0.3

0.2

0.1

0

10⁻²

wave damping

For any model, first adjust parameters to fit Boron/Carbon

Ptuskin et al. 2006 ApJ 642, 902

plain diffusion

diffusive reacceleration

wave damping

then predict the other cosmic-ray spectra

antiprotons

Ptuskin et al. 2006 ApJ 642, 902

plain diffusion

<u>diffusive</u> reacceleration

<u>wave damping</u>

See also

Poster 16 Daniele Gaggero : Diffusion of cosmic rays (numerical code)Poster 86 MarkusAckermann : Analysis of diffuse emission with GLAST

Talk Wednesday Christopher van Eldik : Galactic Centre TeV

Modelling diffuse Galactic γ - rays: *Conventional* model: proton, electron spectra <u>as measured</u>

'Conventional' model: cosmic-ray protons (+He) and electrons as *directly measured*

There is a big excess over prediction !

Wherever you look, the GeV γ -ray excess is there !

Proposed explanations of GeV γ - ray excess:

- 1. SNR with 'injection' CR spectra
- 2. Hard nucleon injection spectrum.
- 3. Hard *electron* injection spectrum
- 4. Moderate changes of nucleon and electron spectra
- 5. Physics of π° production
- 6. Unresolved γ ray sources
- 7. Exotic: dark matter
- 8. Instrumental EGRET response

Proposed explanations of GeV γ - ray excess:

- 1. SNR with 'injection' CR spectra
- 2. Hard nucleon injection spectrum.
- 3. Hard *electron* injection spectrum
- 4. Moderate changes of nucleon and electron spectra
- 5. Physics of π° production
- 6. Unresolved γ ray sources
- 7. Exotic: dark matter
- 8. Instrumental EGRET response

'Optimized' model:

proton, electron spectra factor 2 - 4 higher than measured locally (justification: we are not at a place typical of the Galaxy at large)

Optimized model: vary cosmic-ray proton, electron spectra but keep compatible with expected spatial variations

Satisfactory fit above 10 MeV: no more GeV excess

Optimized model explains the GeV γ - ray excess everywhere!

ALTERNATIVE EXPLANATION of GeV excess

y-ray pulsars: spectrum very reminiscent of the Galactic emission !

Energy (MeV)

ALTERNATIVE EXPLANATION of GeV excess

OR

When you have eliminated the impossible whatever remains, however improbable, must be the truth.

- Sherlock Holmes

EGRET Excess of Diffuse Galactic Gamma Rays as Tracer of Dark Matter

W. de Boer¹, C. Sander¹, V. Zhukov¹, A.V. Gladyshev^{2,3}, D.I. Kazakov^{2,3}

but produces too many antiprotons ... Bergstrom et al. 2006

Facit: proposed explanations of GeV γ -ray excess:

- 1. SNR with injection CR spectra: NO: would give only excess at low latitudes, but observed everywhere
- 2. Hard nucleon injection spectrum: NO: too many antiprotrons, positrons.
- 3. Hard electron injection spectrum: NO: GeV peak absent and spatial fluctuations not enough to allow locally observed spectrum
- 4. Moderate changes in nucleon and electron spectra *current best bet*
- 5. Physics of $p + p \rightarrow \pi^{o}$ NO
- 6. Hard spectrum SOURCES <

Tracer of SNR cosmic-ray sources: Pulsar distribution

Parkes Deep Survey

Yusifov & Kücük 2004 Lorimer 2004

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient. SNR (traced by latest pulsar surveys: Lorimer 2004)

R (kpc)

might be wind gradient (Völk, Breitschwerdt) or...

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient.

SNR (traced by latest pulsar surveys: Lorimer 2004)

Clue: Galactic metallicity gradient e.g. [O/H] *metallicity decreases with R,* X= H₂/CO *decreases with metallicity*

Old mystery of cosmic-ray gradient: gradient based on γ -rays much smaller than SNR gradient.

SNR (traced by latest pulsar surveys: Lorimer 2004)

Clue: Galactic metallicity gradient e.g. [O/H]metallicity decreases with R, $X = H_2 / CO$ decreases with metallicity >>>> $X = H_2 / CO$ increases with radius γ -rays = sources(R) * X(R) *CO(R) (+ HI, inverse Compton terms) Steeper sources * flatter X = observed gamma-rays Strong et al. 2004 A&A 422,L47

broadening the energy coverage: INTEGRAL : down to 20 keV

MILAGRO : up to 15 TeV

it's mainly about cosmic-ray electrons !

radio, hard X, soft gamma sensitive to GeV electrons

inverse Compton $E = \gamma^2 e$ synchrotron $= \gamma^2 B$

1 GeV electrons + CMB, FIR => keV + starlight => MeV $3\mu G$ => GHz radio

Bouchet et al 2008 ApJ 679,1315

primary cosmic-ray electrons

secondary cosmic-ray positrons pp => $pn\pi^+$ => e^+

those electrons & positrons can explain a lot !

Porter, Moskalenko, Strong, Orlando, Bouchet 2008 ApJ 682, 400 (July 20)

Interstellar Radiation Field

new model (Troy Porter)

essential for inverse Compton gamma rays

Gamma-rays, inner Galaxy

inverse Compton

from primary electrons, secondary electrons, positrons

Bouchet et al power-law continuum

Porter, Moskalenko, Strong, Orlando, Bouchet ApJ 682, 400

Gamma-rays, inner Galaxy

inverse Compton from primary electrons, secondary electrons, positrons

Bouchet et al : power-law continuum

Porter, Moskalenko, Strong, Orlando, Bouchet ApJ 682, 400

Gamma-rays, inner Galaxy

inverse Compton from

primary electrons only

secondary electrons, positrons only

inverse Compton origin of hard X and gamma-rays

secondary positrons, electrons important

even hard X-rays trace cosmic rays !!

Krivonos et al. 2007

inner Galaxy as seen by an instrument with IBIS FOV, with diffuse traced by 4.9µ DIRBE map

ridge emission < 50 keV is mainly magnetic CV's and coronally active stars

Inner Galaxy same model, extended to > TeV

arXiv:0805.0417
Milagro, Abdo et al. 2008
Fig: Petra Hüntemeyer

Cygnus Region Excess over prediction

Milagro, Abdo et al. 2008 Fig: Petra Hüntemeyer • arXiv:0805.0417

The final link...

radio

optimized model

RADIO SPECTRUM NORTHERN GALAXY

Model based on gamma-rays gives a good fit to the radio data

$B(\mu G) = 8 e^{-(R - Ro)/50 \text{ kpc} - |z|/3 \text{ kpc}}$

essentially no R- dependence of B

Best-fit **B** model using *galprop* analysis

B-field: bisymmetric spiral + random component 23 GHz WMAP

Interstellar radiation over 20 decades of energy

based on GALPROP model fitted to MW data

Interstellar radiation over 20 decades of energy

it's incomplete, obviously (in progress) Nearer home: THE SUN inverse Compton γ -rays by cosmic-ray electrons on solar radiation in heliosphere

probes cosmic rays in inner heliosphere promising for GLAST

Outlook

GLAST operational, first results later this year

continue to exploit synergy

cosmic-rays - gammas – radio - microwave

