The Formation of Disk Galaxies: The Bulge Perspective

Marcella Carollo

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

OUTLINE

DISK GALAXIES: THE PARADIGM
 (GALAXIES &) BULGES: REALITY CHECK

- 1. NEWS on DATA
- 2. NEWS on SIMULATIONS (WITH & WITHOUT GAS)
- 3. IMPLICATIONS

THEORETICAL "PARADIGM" FOR DISK-GALAXY FORMATION

- 1) Baryons & Dark Matter within virialised systems have identical initial angular momentum distributions (Fall & Efstathiou 80)
- 2) Baryons conserve the angular momentum when cooling (Mestel 63)

\rightarrow <u>EXPONENTIAL</u> BARYONIC DISKS

3) <u>BULGES originate from mergers of halos → LIKE ELLIPTICALS</u>

4) Disks "grow" around spheroids \rightarrow Disk Galaxy Population

VISUALLY: SMOOTH "HUBBLE SEQUENCE" \rightarrow SMOOTH B/D sequence

"PHYSICALLY": "SHARP" DICHOTOMY

kauffmann et al 2003

OBSERVATIONS. 1. KINEMATICS

Disk-like, cold kinematics (from V/σ measurements) (Kormendy 93; Kormendy et al 01)

OBSERVATIONS. 2. STRUCTURE

BULGES AT FAINT-END (Sb and later types), NOT "deVaucouleurs", R^{1/4} STELLAR DENSITY PROFILES

→(ALMOST) EXPONENTIAL "SERSIC" PROFILES with n~1-2

 $\Sigma = \Sigma_0 \exp(-(R/R_d)^{1/n})$

(e.g., Andredakis & Sanders 94; de Jong 95; Courteau at al 96; <u>Carollo et al 98</u>; Graham 2001; MacArthur et al 03)

(n=4: deVaucouleurs; n=1: EXPONENTIAL i.e., AS IN DISKS)

OBSERVATIONS. 2. STRUCTURE

Shen, Mo, White et al 2003

Late-type = c<2.86 and n<2.5

<u>SLOAN</u> ~100000 late-type galaxies

Disks: as in Mo, Mao & White 98; Bulges: instability criterion or merger recipe

Four key ingredients:

- -feedback (\rightarrow gas mass fraction)
- bulge/disk ratio (uniform or instab. crit.)
- ang. mom. transfer bulge \rightarrow disk
- size-mass relation of bulges

Best fit:

→ Bulges generated by disk instability

OBSERVATIONS. 3. POPULATIONS at z=0

MASSIVE BULGES (S0-Sab): Z > 0.5 Z_{solar}

Mean <AGE>: >8-10 Gyrs ∆Age ~ 2 Gyrs

SMALL BULGES (Sb-Sc): If Z=0.4 Z_{solar} \rightarrow MEAN <AGE> ~ 2-to-5 Gyrs \rightarrow BROADER \triangle Age

MANY SMALL BULGES:

- ➔ YOUNGER than MASSIVE SPHEROIDS?
- SIMILAR AGES OF SURROUNDING DISKS?

(Carollo, Stiavelli et al 2001, 2002; Carollo 1999)

OBSERVATIONS. 4. POPULATIONS at z>0

z~1 regime: "Normal Disk galaxies":

→ Disk scale-lengths not much evolved since (Lilly et al. 1998; Ravindranath et al. 2004; GEMS? HWR's talk?)

 \rightarrow Disks + BULGES : Already in place

OBSERVATIONS, 4. POPULATIONS at 220

BARS ABOUNDANT UP TO z~1

Sheth et al 2003

GEMS????

OBSERVATIONS. 4. POPULATIONS at z>0

(Ellis et al 2001)

Colors of Bulges at z > 0.5: Bluer than ellipticals at similar z COSMIC VARIANCE? AGE/METALLICITY ?

1. BULGES: OBSERVATIONS

NEARBY BULGES: STELLAR POPULATIONS

HST ACS FOLLOW UP (+ U, B, I)

<u>Scarlata</u>, Carollo, Stiavelli & Wyse 2004 to be submitted (soon)

NEARBY BULGES: STELLAR POPULATIONS

(Carollo + SAURON Team)

WHT 2-D SAURON SPECTRA

CYCLE 13 HST STIS SPECTRA

(Carollo et al)

→<u>As a function of age/Z & mass,</u> <u>down to smallest bulges</u>

BULGES AT INTERMEDIATE-z ?

BULGES AT INTERMEDIATE-z ?

→ANALYSIS OF STELLAR POPULATIONS of DISK GALAXIES in GOODS/CDFS ACS

+ Ferreras, Lilly, Lisker, Mobasher

→ BULGES @ 0.5 < z < 1

z's: phot-z by Mobasher et al 2004 + ESO/FORS & VIRMOS DFs

 $I_{AB} < 23.5 < z > ~0.7$

SAMPLE SELECTION. 1. SED CLASSIFICATION

GOODS: MORPHOLOGICAL SELECTION

I-z V-I B-V COLOR PROFILES

pix-to-pix on drizzled images (0.03") S/N_{pix}>0.5

ID33.357

"STATISTICAL" INTERPRETATION

NEEDS:

\rightarrow SIMULATIONS TO UNDERSTAND WHETHER/HOW BULGE COLORS ARE CONTAMINATED BY DISK LIGHT AS A FUNCTION OF z

→UNDERSTAND SAMPLE SELECTION BIASES (e.g., different S/N in different passbands; C, M₂₀ depend on passband, etc etc)

→ IN PROGRESS

DISTRIBUTION of $\triangle Age = Age_{BULGE} - Age_{Disk}$

AT 0.5 < z < 1:

→MANY BULGES in INTERMEDIATE→LATE-TYPE DISKS HAVE AVERAGE AGES COMPARABLE TO AGES OF SURROUNDING DISKS **SUMMARY. 1. OBSERVATIONS**

1. LOCAL Sb→LATER-TYPE BULGES: STRUCTURE, KINEMATICS and STELLAR POPULATIONS of DISKS

2. INTERMEDIATE-z "INTERMEDIATE-SIZE" BULGES:

YOUNGER THAN Es and STELLAR POPULATIONS SIMILAR TO HOST DISKS

 \rightarrow CONSISTENT WITH "LATE" BULGE FORMATION

→ Sb+ BULGES: PRODUCTS OF INTERNAL DISK EVOLUTION?

2. BULGES: SIMULATIONS

OUR SIMULATION SURVEY. 1

(Debattista, Carollo, Mayer & Moore 2004 ApJL 604, 93 Debattista, Mayer, Carollo & Moore 2004, to be submitted soon)

1. Live Disk inside Dark Matter Halo FROZEN SPHERICAL POTENTIAL High resolution polar grid code

(Sellwood & Valluri 1997; Debattista & Sellwood 1998)

• several x 10^6 particles

PHOTOMETRIC/STRUCTURAL COMPARISON

Black Dots: Data from MacArthur et al 02

Projected simulations: →Different i →Different PA_{BAR}

(GLOBAL) KINEMATIC COMPARISON

→(BUCKLED) BARS CAN MIMICK <u>BOTH</u> JK's PSEUDO-BULGES & "ISO-OBLATE-LIKE" KINEMATICS

(see John&Rob's review)

OUR SIMULATION SURVEY. 2

(in collaboration with: *L. Mayer*, *B. Moore & V. Debattista*)

2. Live Disk inside LIVE, SPHERICAL Dark Matter Halo PKDGRAV (Stadel 2001)

3. SPH+NBODY

GASOLINE (Wadsley, Stadel & Quinn 2004)

LIVE HALO: N-BODY

ADOPTED MODEL: Λ -CDM of MILKY WAY (e.g., Klypin et al 2002)

HALO: NFW with c=11 (cnf: cosmological simulations)
→ adiabatic-contraction-recipe of Mo, Mao & White 98

Spin Parameter = 0.0465 (~ mean value in cosmological runs)

Disk/Halo Mass = 0.06 (\rightarrow Scale-length: ~3 kpc)

Disk Height = 0.05 x Disk Scale-length

Softening: 300pc

 $10^6 \rightarrow 10^7$ DM particles

COLLISIONLESS

10⁶ DM particles + $2x10^5$ stars; 10⁵ gas

(same softening)

IDEAL with $P=(\gamma-1)\rho u$

 γ = ratio of specific heats = 5/3

(gaseous disk represents atomic hydrogen component)

→ Solved internal energy equation which includes artificial viscosity term to model irreversible heating from shocks → Adopted standard Monaghan artificial viscosity and Balsara (1995) criterion to reduce unwanted shear viscosity

 \rightarrow Adiabatic runs: Thermal energy can rise (compressional & shock heating) or drop (decompressions)

 \rightarrow Radiative cooling: Energy can be released also through radiation; Standard complete cooling function with primordial H+He (sharp drop at 10⁴ K)

GASEOUS DISK

→ T = 10000K (consistent with observed gas velocity dispersions; Martin & Kennicutt 2001)

→ Expo surface density profile with same scale-length of stellar disk
 → Thickness determined by local hydrostatic equilibrium

 $\begin{array}{ll} \mbox{GLOBAL STABILITY: COMBINED STABILITY of gas+stars} \\ \mbox{For chosen T} \rightarrow \mbox{Q}_{GAS,\,MIN} \leq \mbox{Q}_{STARS,MIN} & (Jog \,\& \, Solomon \, 91) \end{array}$

→IF THE DISK REMAINS COLD, GRAVITATIONAL INSTABILITIES WILL BE MORE VIGOROUS IN THE GASEOUS DISK AND AFFECT THE DEVELOPMENT OF NON-AXISYMMETRY EVEN IN THE STELLAR DISK (e.g., Rafikov 2001)

 \rightarrow STABILITY OF COMPONENTS NOT SIMPLY "ADDITIVE"

STAR FORMATION à la Katz 1992

1) gas particles turn gradually into star particles

 \rightarrow i.e., they remain "hybrid" for some time, and each gas particle can "make" more than one star particle as its mass decreases

2) To turn into stars gas particles must be:

- → in a collapsing region (convergent flow, i.e. DIVv <0 around target particle in a volume containing 32 SPH neighbours)
- \rightarrow Jeans unstable (because either t_{dyn} or $t_{cool} < t_{sound}$, the timescale for pressure waves to propagate
- → above density threshold (=1 atom/cm³) → d lnp_g /dt = -c_{*}/t_g [t_g = max between local t_{gasdyn} & local t_{cooling}] →reproduces Kennicutt's law

<u>3) Efficiency parameter</u> (set to give SFR of local spirals) <u>4) Stars form with Miller-Scale IMF</u>

(used for SNI&II rates \rightarrow NOT today!)

RADIAL PROFILE of J STARS AT DIFFERENT TIMES

HOWEVER: 3-WAY EXCHANGE, ALL COMPONENTS INVOLVED

DM: LEAST "RESPONSIVE" (DOMINATES MASS)

	Stars	Gas	DM
collisionless	0.89		1.004
Cooling 10%	0.99	0.83	1.001
Cooling 50%	1.055	0.77	1.001
Ad. 50%	0.98	0.89	1.006
SF (10%)	0.94	1.35 (?)	1.001

10% mass in gas (with RADIATIVE COOLING)

50% mass in gas (with RADIATIVE COOLING)

DOMINANT CAUSE OF TRANSFER OF ANGULAR MOMENTUM: SPIRAL INSTABILITIES & CLUMPS @ EARLY TIMES (NOT BAR!) →→ very round structures →see models by Noguchi 2000 →→ DIFFERENT "REGIME" WHEN DISK IS GASEOUS & HIGHLY TOOMRLY UNSTABLE

→Can make "old" remnants !

50% mass in gas (ADIABATIC CASE)

REMNANT MORE SIMILAR TO DISSIPATIONLESS CASE

Star Formation

CENTRAL STRUCTURE: SIMILAR THICKNESS OF MATCHED NO-SF RUN, BUT MORE ELONGATED!

"NEW" STARS: AGE & SPATIAL DISTRIBUTION

GLOBAL COMPARISON. 2

Gas: Qualitative trends as in Berentzen, Heller, Shlosman & Fricke 98

Improvements:

 → non-truncated, non-core "cosmologically-motivated" models with adiabatic contraction, link between spin_{halo} & h_{disk}, 30x DM particles
 → non-isoT EQ-S (I.e., we model heating in shocks, "complete" radiative cooling >10⁴K), 10x gas particles

GLOBAL COMPARISON. 2

50% COOLING, 50% ADIABATIC & SF RUNS:

→ "NON-LINEARITY", COMPLEXITY OF TRENDS,

→ <u>STRONGLY DEPENDENT ON "PHYSICS"</u> <u>OF GAS & GAS HYDRODYNAMICS</u>

KINEMATIC COMPARISON: STELLAR V/s as a function of RADIUS (and TIME)

(GLOBAL) KINEMATIC COMPARISON

 $\epsilon_{\rm b}$

(GLOBAL) KINEMATIC COMPARISON

BUT, STRONG DEPENDENCE ON:

- $\rightarrow f_{gas}$
- \rightarrow Čooling properties
- \rightarrow Star Formation
- \rightarrow Feedback ?

→ → DIFFERENT "REGIMES"

$\rightarrow \rightarrow \rightarrow$ DISK INTERNAL EVOLUTION WITH z: CAN BE <u>VERY COMPLEX</u>

SUMMARY. 2. SIMULATIONS

1. **DISSIPATIONLESS DISK EVOLUTION** (BAR BUCKLING)

→ BUCKLED BARS HAVE THE PROPERTIES OF BULGES (FROM DYNAMICALLY-COLD TO -HOT, ISOTROPIC-OBLATE-ROTATOR-LIKE PROPERTIES)

2. **DISSIPATIVE DISK EVOLUTION** :

- A) CAN "ROUND, SHRINK & COOL" THE REMNANT (BUCKLED) BAR i.e., THE FINAL BULGE-LIKE STRUCTURE
- **B) BUT: VERY COMPLEX PROCESS**

→ VASTE RANGE OF "BULGE" PROPERTIES OBTAINABLE, INCLUDING THICKNESS, HOT DYNAMICS, "OLD AGES" ETC

→ DISSIPATIVE+DISSIPATIONLESS DISK (SECULAR=SLOW & NON) EVOLUTION CAN REPRODUCE THE ENTIRE PARAMETER SPACE of Sb & LATER-TYPE BULGES

CONCLUSION

1) Sb & LATER-TYPE BULGES: LIKELY <u>NOT MERGER REMNANTS BUT PRODUCED</u> BY INTERNAL EVOLUTION OF PARENT DISKS

IMPLICATIONS

2) IF Sb \rightarrow Sc BULGES ARE THE RESULT OF DISK EVOLUTION

→ TOTAL STELLAR MASS IN SPHEROIDS ~ 50%

Parameter	E	S0	Sab	Sbc	Scd	Irr
Bulge fraction $\kappa(r)$	1	0.75	0.40	0.24	0.10	0
Bulge fraction $\kappa(\mathbf{B})$	1	0.64	0.33	0.16	0.061	0
Morphology fraction $\mu(B)$	0.11	0.21	0.28	0.29	0.045	0.061
H I typical mass $(10^9 M_{\odot})$	0	0.64	2.5	4.0	2.9	1.8
H_2/H_1		2.5	1.0	0.63	0.25	0.06

GALAXY PARAMETERS

(Fukugita etal 98)

FRACTION IN LATE-TYPE BULGES: NEGLIGIBLE

IMPLICATIONS

2) IF Sb \rightarrow Sc BULGES ARE THE RESULT OF DISK EVOLUTION

→ ~30-40% of GALAXIES MUST BE BORN AS "PURE DISKS" (NO INNER "MERGER REMNANT" COMPONENT)

Parameter	E	S 0	Sab	Sbc	Scd	Irr
Bulge fraction $\kappa(r)$	1	0.75	0.40	0.24	0.10	0
Bulge fraction $\kappa(B)$	1	0.64	0.33	0.16	0.061	0
Morphology fraction $\mu(B)$	0.11	0.21	0.28	0.29	0.045	0.061
H I typical mass $(10^9 M_{\odot})$	0	0.64	2.5	4.0	2.9	1.8
H ₂ /H I		2.5	1.0	0.63	0.25	0.06

GALAXY PARAMETERS

(Fukugita etal 98)

→ IMPORTANT CONSTRAINT TO GALAXY FORMATION IN CDM!