Estimate of the X-ray mass in galaxy clusters

Stefano Ettori (INAF-OA Bologna)

X-ray total mass

The ICM is a fluid because the time scale of elastic/ Coulomb collisions between ions & e⁻ $(t_{coulomb} \propto T^{3/2}/n)$ is $<< t_{cooling} (\propto T^{1/2}/n)$ & $t_{heating}$

ICM is in hydrostatic equilibrium:

 $t_{sound} (\propto R/T^{1/2}) < t_{age} \approx H_0^{-1}$

X-ray total mass

Total mass from X-ray is determined by assuming **1. spherical symmetry**, **2. hydrostatic equilibrium**

X-ray total mass

Total mass from X-ray is determined by assuming **1. spherical symmetry**, **2. hydrostatic equilibrium**

$$M_{tot}(< r) = -\frac{kT_{gas}(r) r}{G\mu m_p} \left(\frac{\partial \ln n_{gas}}{\partial \ln r} + \frac{\partial \ln T_{gas}}{\partial \ln r}\right)$$

$$M_{tot}(< r) \propto r \times T_{gas}(r) \times (-\alpha_n - \alpha_T)$$

 $\alpha_{n} \sim -2/-2.4$ $\alpha_{T} \sim 0/-0.8$

ICM at R_{vir}: Observed clusters

"Outer regions of the cluster gaseous atmosphere" Vikhlinin et al. (99): β ~0.8 and larger by ~0.05 of the global fit value

Sample of nearby clusters observed with ROSAT/PSPC (Neumann 2005)

ICM at R_{vir}: Observed clusters

very preliminary results

with Suzaku by T.Reiprich

A2204

Sample of 60 objects observed with XMM (Leccardi & Molendi 08)

On the Temperature profile

On the Temperature profile

Changing I = Src/Bkg between 0 and 1 (Leccardi & Molendi 2008)

Estimate of the X-ray M_{tot}

✓HEE with functional forms of T and n_{gas} (e.g. β-model) & then fit with mass models (e.g. NFW)

Buote, Pointecouteau, Vikhlinin (& high-z obj with T=const)

 ✓ Use of mass models (e.g. NFW) by fitting either T_{deproj}
 or T_{xspec} from inversion of HE Fabian/Allen, Ettori

direct application of HEE on deprojected T and n_{gas}
 Ettori (and others...)

Integral of HEE from deprojected spectra
 Nulsen (pioneering work in 1995 with Hans on Virgo)

Estimate of the X-ray M_{tot}

To summarize: two methods

model-dependent forward

model-independent **backward**

Pro

smooth profiles derivable

not need for parameters

Contra

radial shape imposed need many parameters (e.g. Vikhlinin 05: 10 in n_{gas}, 9 in T_{gas}) degenaracy radial profiles often not smooth enough, derivatives problematic

X-ray total mass in 7 steps

Step 1: define a grid in {c, rs} Step 2: define a functional form for $M(\langle r) = K * f(x) * r_s^3 * m(c)$ where m(c) = $\delta/3 * c^3 / (\log(1+c) - c/(1+c))$ $f(x) = \log(x + \operatorname{sqrt}(1+x^2)) - x/ \operatorname{sqrt}(1+x^2)$ [Isothermal] $= \log(1+x) - x/(1+x)$ [NFW] $= \dots$

Step 3: at each resolved r, estimate dP = -M/r² *n_e*dr **Step 4:** define P_{out} **Step 5:** P(r) = P_{out} - Sum(Reverse(dP)) **Step 6:** T_{fit} = P(r) / n_e **Step 6bis:** project T_{fit} in the observed annulus (e.g., with Mazzotta's rule) **Step 7:** χ^2 (c, rs) = Sum((T_{fit} - T_{xspec})² / err²)

X-ray total mass: the observables

X-ray total mass: the observables

A1689: z=0.183, t_{exp}=10.8 ksec, total cts=32,500

X-ray total mass: the deprojection

(Fabian & Cambridge group, Nulsen, Buote, Ettori, Arabadjis, Peterson et al., Vikhlinin, Pratt, Pizzolato, Croston,...)

$$egin{aligned} &n_{ ext{e}} = \left[(extbf{Vol}^T)^{-1} \# (EI/0.82)
ight]^{1/2} \ &\epsilon = (extbf{Vol}^T)^{-1} \# L_{ ext{ring}} \ &\epsilon T_{ ext{shell}} = (extbf{Vol}^T)^{-1} \# (L_{ ext{ring}} T_{ ext{ring}}). \end{aligned}$$

X-ray total mass: n_{gas} & T_{gas}

X-ray total mass: changing T(r)

X-ray total mass: changing T(r)

X-ray total mass: other methods

X-ray total mass: other methods

X-ray total mass: other methods

ERROR BUDGET FOR DARK MATTER FITS

Parameter	Best Fit	$\Delta_{\rm Statistical}$	$\Delta_{\rm Background}$	$\Delta_{M_{\rm stars}}$	Δ_{Deproj}
Power-law model:					
γ	1.65	± 0.21	(+0.17, -0.16)	(+0.06, -0.00)	+0.35
NFW model:		\frown			
<i>c</i>	4.9	(±2.4	(+1.9, -1.7)	(+1.2, -0.6)	-3.8
r _{vir} (Mpc)	1.0	± 0.5	(+0.3, -0.2)	(+0.06, -0.05)	+1.9

Notes.—The "Best Fit" column indicates the best-fit value and $\Delta_{\text{Statistical}}$ the 1 σ statistical error from Table 3. The quantity $\Delta_{\text{Background}}$ gives the results when the X-ray background level is set to $\pm 20\%$ of nominal. ΔM_{stars} represents the uncertainty associated with the stellar mass-to-light ratio. The quantity Δ_{Deproj} provides an estimate of the error associated with the deprojection procedure.

But do we know the systematics in the estimates of M_{tot} in X-ray galaxy clusters ?

Evrard, Metzler, Navarro 96; Schindler 96; Bartelmann & Steinmetz 96; Balland & Blanchard 97; Kay et al. 04; Rasia, SE et al. 06; Hallman et al. 06; Nagai, Vikhlinin, Kravtsov 07; *Meneghetti, Rasia, SE et al. in prep*

Rasia, SE et al. 06:

6 в

- 4

5 dusters in different dynamical state (T_{ggs}~3.9, 3.6, 3.3, 2.7 keV) have been extracted from the simulation and processed with **X-MAS** to obtain moch Chandra ACIS-S3 1 Ms observations

X-ray M_{est} underestimates M_{true} by 10-45 %

Ratios btw estimated and true mass profile of the simulated duster

Nagai et al. 07

X-ray M_{est} underestimates M_{true} by 10-45 %

Thalf of the error budget comes from neglecting gas motions inhomogeneities in T map affect M_{tot} by 10-15 %

X-ray M_{est} underestimates M_{true} by 10-45 %

Thalf of the error budget comes from neglecting gas motions
 inhomogeneities in T map affect M_{tot} by 10-15 %

→ poor contraints on n_{gas} from β-model; due to the limited radial interval over which the fit is done, β / c_{NFW} are always lower / higher than the values measured from fit of ρ_{gas} up to R₂₀₀

X-ray vs **lensing mass:** *simulations*

M_X / X-MAS vs M_{lensing} / ray tracing both from hydrodynamical simulated dusters (work in progress with E. Rasia & M. Meneghetti)

X-ray total & gas mass: projection

NOTE:

1.whatever the projection/method is M_{gas} is recovered within few (~5) %

2. forward/backward methods (solid/dashed lines) are consistent within 10-15%

3. Errors on M_{tot} too optimistic ?

Conclusions on estimate of the X-ray M_{tot}

• Hydrostatic equilibrium holds locally: look for relaxed regions also in merging systems

• At least two main ways (one *forward*, one *backward*) to apply HEE: pro/contra, no systematic is evident btw them, not thermalized ICM is missed

• Are errors on M_{tot} too optimistic ?

Baryons in simulated 6 keV @z=1 (© Norman et al)

Simulators & Observers: towards an unique view of galaxy clusters